Cargando…
Fault Diagnosis of Rolling Bearing Based on HPSO Algorithm Optimized CNN-LSTM Neural Network
The quality of rolling bearings is vital for the working state and rotation accuracy of the shaft. Timely and accurately acquiring bearing status and early fault diagnosis can effectively prevent losses, making it highly practical. To improve the accuracy of bearing fault diagnosis, this paper propo...
Autores principales: | Tian, He, Fan, Huaicong, Feng, Mingwen, Cao, Ranran, Li, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385623/ https://www.ncbi.nlm.nih.gov/pubmed/37514802 http://dx.doi.org/10.3390/s23146508 |
Ejemplares similares
-
Fault Diagnosis
of the Dynamic Chemical Process Based
on the Optimized CNN-LSTM Network
por: Chen, Honghua, et al.
Publicado: (2022) -
A New Fault Diagnosis of Rolling Bearing Based on Markov Transition Field and CNN
por: Wang, Mengjiao, et al.
Publicado: (2022) -
Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods
por: Mohammed Alsumaidaee, Yaseen Ahmed, et al.
Publicado: (2023) -
Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
por: Song, Xinmin, et al.
Publicado: (2023) -
Rolling Bearing Fault Diagnosis Using Multi-Sensor Data Fusion Based on 1D-CNN Model
por: Wang, Hongwei, et al.
Publicado: (2022)