Cargando…

An Integrated Multi-Functional Thermal Conductive and Flame Retardant Epoxy Composite with Functionalized Carbon Nitride Nanosheets

In miniaturized and integrated electronic devices, thermal potential and fire hazards caused by heat diffusion require an efficient thermal management system with versatile electronic packaging equipment. The flame retardancy was endowed on the surface of carbon nitride after thermal etching (CNNS)...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yuxin, Wang, Ruiping, Leng, Yang, Wang, Jingchun, Xu, Miaojun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385693/
https://www.ncbi.nlm.nih.gov/pubmed/37514531
http://dx.doi.org/10.3390/polym15143143
Descripción
Sumario:In miniaturized and integrated electronic devices, thermal potential and fire hazards caused by heat diffusion require an efficient thermal management system with versatile electronic packaging equipment. The flame retardancy was endowed on the surface of carbon nitride after thermal etching (CNNS) containing piperazine pyrophosphate (PPAP) by hydrogen bonding, and the obtained nanosheet was defined as PPAP-CNNS. During solution blending and program-controlled curing, PPAP-CNNS was used as a multifunctional filler to fabricate highly thermoconductive and fire retardant epoxy resin (EP) composites. In line with expectations, the resultant EP composites containing 7 wt% PPAP-CNNS had an exceptional thermal conductivity (TC) of 1.1 W·m(−1)K(−1), which was 4.8 times higher than pure EP. Simultaneously, there was a sharp drop in the heat release rate (HRR), total heat release (THR), smoke production rate (SPR), and total smoke production (TSP) compared to pure EP. These reductions were, respectively, 63.7%, 54.2%, 17.9%, and 57.2%. The addition of PPAP-CNNS increased the specific surface area, which increased the heat conduction routes, and also the shape of the compact and solid char layer during burning, protecting the underlying polymer. These improvements to dispersion and surface functionalization were made possible by the compound. These results indicate that the preparation of integrated multi-functional resin described in this study has a wide application.