Cargando…

Numerical Study of the Effect of High Gravity in Material Extrusion System and Polymer Characteristics during Filament Fabrication

Polymer science plays a crucial role in the understanding and numerical study of material extrusion processes that have revolutionized additive manufacturing (AM). This study investigated the impact of high-gravity conditions on material extrusion and conducted a numerical study by referring to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Xin, Koike, Ryo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385754/
https://www.ncbi.nlm.nih.gov/pubmed/37514426
http://dx.doi.org/10.3390/polym15143037
Descripción
Sumario:Polymer science plays a crucial role in the understanding and numerical study of material extrusion processes that have revolutionized additive manufacturing (AM). This study investigated the impact of high-gravity conditions on material extrusion and conducted a numerical study by referring to the development of a high-gravity material extrusion system (HG-MEX). In this study, we evaluated the polymeric characteristics of HG-MEX. By analyzing the interplay between polymer behavior and gravity, we provide insights into the effects of high gravity on extrusion processes, including filament flow, material deposition, and the resulting fabrication characteristics. The established numerical study of high-gravity material extrusion in additive manufacturing is a meaningful and valuable approach for improving the quality and efficiency of the process. This study is unique in that it incorporates material surface characteristics to represent the performance and contact with polymer science in additive manufacturing. The findings presented herein contribute to a broader understanding of polymer science and its practical implications for HG-MEX under various gravitational conditions.