Cargando…
The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications
The use of technology in agriculture has been gaining significant attention recently. By employing advanced tools and automation and leveraging the latest advancements in the Internet of Things (IoT) and artificial intelligence (AI), the agricultural sector is witnessing improvements in its crop yie...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385791/ https://www.ncbi.nlm.nih.gov/pubmed/37514557 http://dx.doi.org/10.3390/s23146262 |
_version_ | 1785081497656492032 |
---|---|
author | Alzuhair, Ahmed Alghaihab, Abdullah |
author_facet | Alzuhair, Ahmed Alghaihab, Abdullah |
author_sort | Alzuhair, Ahmed |
collection | PubMed |
description | The use of technology in agriculture has been gaining significant attention recently. By employing advanced tools and automation and leveraging the latest advancements in the Internet of Things (IoT) and artificial intelligence (AI), the agricultural sector is witnessing improvements in its crop yields and overall efficiency. This paper presents the design and performance analysis of a machine learning (ML) model for agricultural applications involving acoustic sensing. This model is integrated into an efficient Artificial Intelligence of Things (AIoT) platform tailored for agriculture. The model is then used in the design of a communication network architecture and for determining the distribution of the computing load between edge devices and the cloud. The study focuses on the design, analysis, and optimization of AI deployment for reliable classification models in agricultural applications. Both the architectural level and hardware implementation are taken into consideration when designing the radio module and computing unit. Additionally, the study encompasses the design and performance analysis of the hardware used to implement the sensor node specifically developed for sound classification in agricultural applications. The novelty of this work lies in the optimization of the integrated sensor node, which combines the proposed ML model and wireless network, resulting in an agricultural-specific AIoT platform. This co-design enables significant improvements in the performance and efficiency for acoustic and ambient sensing applications. |
format | Online Article Text |
id | pubmed-10385791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103857912023-07-30 The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications Alzuhair, Ahmed Alghaihab, Abdullah Sensors (Basel) Article The use of technology in agriculture has been gaining significant attention recently. By employing advanced tools and automation and leveraging the latest advancements in the Internet of Things (IoT) and artificial intelligence (AI), the agricultural sector is witnessing improvements in its crop yields and overall efficiency. This paper presents the design and performance analysis of a machine learning (ML) model for agricultural applications involving acoustic sensing. This model is integrated into an efficient Artificial Intelligence of Things (AIoT) platform tailored for agriculture. The model is then used in the design of a communication network architecture and for determining the distribution of the computing load between edge devices and the cloud. The study focuses on the design, analysis, and optimization of AI deployment for reliable classification models in agricultural applications. Both the architectural level and hardware implementation are taken into consideration when designing the radio module and computing unit. Additionally, the study encompasses the design and performance analysis of the hardware used to implement the sensor node specifically developed for sound classification in agricultural applications. The novelty of this work lies in the optimization of the integrated sensor node, which combines the proposed ML model and wireless network, resulting in an agricultural-specific AIoT platform. This co-design enables significant improvements in the performance and efficiency for acoustic and ambient sensing applications. MDPI 2023-07-10 /pmc/articles/PMC10385791/ /pubmed/37514557 http://dx.doi.org/10.3390/s23146262 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alzuhair, Ahmed Alghaihab, Abdullah The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications |
title | The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications |
title_full | The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications |
title_fullStr | The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications |
title_full_unstemmed | The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications |
title_short | The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications |
title_sort | design and optimization of an acoustic and ambient sensing aiot platform for agricultural applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385791/ https://www.ncbi.nlm.nih.gov/pubmed/37514557 http://dx.doi.org/10.3390/s23146262 |
work_keys_str_mv | AT alzuhairahmed thedesignandoptimizationofanacousticandambientsensingaiotplatformforagriculturalapplications AT alghaihababdullah thedesignandoptimizationofanacousticandambientsensingaiotplatformforagriculturalapplications AT alzuhairahmed designandoptimizationofanacousticandambientsensingaiotplatformforagriculturalapplications AT alghaihababdullah designandoptimizationofanacousticandambientsensingaiotplatformforagriculturalapplications |