Cargando…
Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images
The most significant technical challenges of current aerial image object-detection tasks are the extremely low accuracy for detecting small objects that are densely distributed within a scene and the lack of semantic information. Moreover, existing detectors with large parameter scales are unsuitabl...
Autores principales: | Hu, Mengzi, Li, Ziyang, Yu, Jiong, Wan, Xueqiang, Tan, Haotian, Lin, Zeyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385816/ https://www.ncbi.nlm.nih.gov/pubmed/37514717 http://dx.doi.org/10.3390/s23146423 |
Ejemplares similares
-
YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Selection in Aerial Imagery
por: Betti, Alessandro, et al.
Publicado: (2023) -
SenseLite: A YOLO-Based Lightweight Model for Small Object Detection in Aerial Imagery
por: Han, Tianxin, et al.
Publicado: (2023) -
MSA-YOLO: A Remote Sensing Object Detection Model Based on Multi-Scale Strip Attention
por: Su, Zihang, et al.
Publicado: (2023) -
AIE-YOLO: Auxiliary Information Enhanced YOLO for Small Object Detection
por: Yan, Bingnan, et al.
Publicado: (2022) -
YOLO-G: Improved YOLO for cross-domain object detection
por: Wei, Jian, et al.
Publicado: (2023)