Cargando…
Ensemble Learning for Breast Cancer Lesion Classification: A Pilot Validation Using Correlated Spectroscopic Imaging and Diffusion-Weighted Imaging
The main objective of this work was to evaluate the application of individual and ensemble machine learning models to classify malignant and benign breast masses using features from two-dimensional (2D) correlated spectroscopy spectra extracted from five-dimensional echo-planar correlated spectrosco...
Autores principales: | Joy, Ajin, Lin, Marlene, Joines, Melissa, Saucedo, Andres, Lee-Felker, Stephanie, Baker, Jennifer, Chien, Aichi, Emir, Uzay, Macey, Paul M., Thomas, M. Albert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385820/ https://www.ncbi.nlm.nih.gov/pubmed/37512542 http://dx.doi.org/10.3390/metabo13070835 |
Ejemplares similares
-
Correlated MR spectroscopic imaging of breast cancer to investigate metabolites and lipids: acceleration and compressed sensing reconstruction
por: Joy, Ajin, et al.
Publicado: (2022) -
Dictionary learning compressed sensing reconstruction: pilot validation of accelerated echo planar J-resolved spectroscopic imaging in prostate cancer
por: Joy, Ajin, et al.
Publicado: (2022) -
Enhanced spectral resolution for correlated spectroscopic imaging using inner-product and covariance transform: a pilot analysis of metabolites and lipids in breast cancer in vivo
por: Joy, Ajin, et al.
Publicado: (2023) -
Non‐water‐suppressed short‐echo‐time magnetic resonance spectroscopic imaging using a concentric ring k‐space trajectory
por: Emir, Uzay E., et al.
Publicado: (2017) -
In Vivo Renal Lipid Quantification by Accelerated Magnetic Resonance Spectroscopic Imaging at 3T: Feasibility and Reliability Study
por: Alhulail, Ahmad A., et al.
Publicado: (2022)