Cargando…
Agricultural Solid Wastes Based Adsorbent Materials in the Remediation of Heavy Metal Ions from Water and Wastewater by Adsorption: A Review
Adsorption has become the most popular and effective separation technique that is used across the water and wastewater treatment industries. However, the present research direction is focused on the development of various solid waste-based adsorbents as an alternative to costly commercial activated...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386015/ https://www.ncbi.nlm.nih.gov/pubmed/37513447 http://dx.doi.org/10.3390/molecules28145575 |
Sumario: | Adsorption has become the most popular and effective separation technique that is used across the water and wastewater treatment industries. However, the present research direction is focused on the development of various solid waste-based adsorbents as an alternative to costly commercial activated carbon adsorbents, which make the adsorptive separation process more effective, and on popularising the sustainable options for the remediation of pollutants. Therefore, there are a large number of reported results available on the application of raw or treated agricultural biomass-based alternatives as effective adsorbents for aqueous-phase heavy metal ion removal in batch adsorption studies. The goal of this review article was to provide a comprehensive compilation of scattered literature information and an up-to-date overview of the development of the current state of knowledge, based on various batch adsorption research papers that utilised a wide range of raw, modified, and treated agricultural solid waste biomass-based adsorbents for the adsorptive removal of aqueous-phase heavy metal ions. Metal ion pollution and its source, toxicity effects, and treatment technologies, mainly via adsorption, have been reviewed here in detail. Emphasis has been placed on the removal of heavy metal ions using a wide range of agricultural by-product-based adsorbents under various physicochemical process conditions. Information available in the literature on various important influential physicochemical process parameters, such as the metal concentration, agricultural solid waste adsorbent dose, solution pH, and solution temperature, and importantly, the adsorbent characteristics of metal ion removal, have been reviewed and critically analysed here. Finally, from the literature reviewed, future perspectives and conclusions were presented, and a few future research directions have been proposed. |
---|