Cargando…

Enhanced Adjacency Matrix-Based Lightweight Graph Convolution Network for Action Recognition

Graph convolutional networks (GCNs), which extend convolutional neural networks (CNNs) to non-Euclidean structures, have been utilized to promote skeleton-based human action recognition research and have made substantial progress in doing so. However, there are still some challenges in the construct...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Daqing, Deng, Hongmin, Zhi, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386035/
https://www.ncbi.nlm.nih.gov/pubmed/37514691
http://dx.doi.org/10.3390/s23146397
Descripción
Sumario:Graph convolutional networks (GCNs), which extend convolutional neural networks (CNNs) to non-Euclidean structures, have been utilized to promote skeleton-based human action recognition research and have made substantial progress in doing so. However, there are still some challenges in the construction of recognition models based on GCNs. In this paper, we propose an enhanced adjacency matrix-based graph convolutional network with a combinatorial attention mechanism (CA-EAMGCN) for skeleton-based action recognition. Firstly, an enhanced adjacency matrix is constructed to expand the model’s perceptive field of global node features. Secondly, a feature selection fusion module (FSFM) is designed to provide an optimal fusion ratio for multiple input features of the model. Finally, a combinatorial attention mechanism is devised. Specifically, our spatial-temporal (ST) attention module and limb attention module (LAM) are integrated into a multi-input branch and a mainstream network of the proposed model, respectively. Extensive experiments on three large-scale datasets, namely the NTU RGB+D 60, NTU RGB+D 120 and UAV-Human datasets, show that the proposed model takes into account both requirements of light weight and recognition accuracy. This demonstrates the effectiveness of our method.