Cargando…
Effects of Heat-Moisture-Treated High-Amylose Rice Flour on Body Weight, Lipid Metabolism, and Gut Microbiome Composition in Obese Rats
The rising prevalence of lifestyle diseases, such as type 2 diabetes, cardiovascular diseases, and metabolic syndrome, has increased the need for effective dietary interventions. This study aimed to evaluate the effects of heat-moisture-treated high-amylose rice (HA-HMT) on body weight, lipid metabo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386097/ https://www.ncbi.nlm.nih.gov/pubmed/37512566 http://dx.doi.org/10.3390/metabo13070858 |
Sumario: | The rising prevalence of lifestyle diseases, such as type 2 diabetes, cardiovascular diseases, and metabolic syndrome, has increased the need for effective dietary interventions. This study aimed to evaluate the effects of heat-moisture-treated high-amylose rice (HA-HMT) on body weight, lipid metabolism, and gut microbiome composition in a rat model of obesity. Starch digestibility—specifically, resistant starch—has been shown to provide various health benefits, including improved metabolic health and gut microbiome composition. We employed a sequential approach: firstly, utilizing diet-induced obesity rat models fed with HMT-processed and HMT-non-processed low- or high-amylose rice to investigate the potential of amylose content or HMT to alter phenotypic characteristics and lipid metabolism; and secondly, using the optimal rice flour identified in the previous step to explore the underlying mechanisms. Our findings indicate that heat-moisture treatment, rather than the level of the amylose content of the rice, contributes to the observed anti-obesity and cholesterol-lowering effects. We identified candidate genes contributing to the cholesterol-regulating potential and demonstrated that HMT rice flour could influence the gut microbiome, particularly the Ruminococcus taxa. This study provides valuable insights into the health benefits of HA-HMT rice and supports its potential as a functional food ingredient in the management of obesity and cholesterol-related disorders. |
---|