Cargando…

Smart Delivery Systems Responsive to Cathepsin B Activity for Cancer Treatment

Cathepsin B is a lysosomal cysteine protease, contributing to vital cellular homeostatic processes including protein turnover, macroautophagy of damaged organelles, antigen presentation, and in the extracellular space, it takes part in tissue remodeling, prohormone processing, and activation. Howeve...

Descripción completa

Detalles Bibliográficos
Autores principales: Egorova, Vera S., Kolesova, Ekaterina P., Lopus, Manu, Yan, Neng, Parodi, Alessandro, Zamyatnin, Andrey A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386206/
https://www.ncbi.nlm.nih.gov/pubmed/37514035
http://dx.doi.org/10.3390/pharmaceutics15071848
Descripción
Sumario:Cathepsin B is a lysosomal cysteine protease, contributing to vital cellular homeostatic processes including protein turnover, macroautophagy of damaged organelles, antigen presentation, and in the extracellular space, it takes part in tissue remodeling, prohormone processing, and activation. However, aberrant overexpression of cathepsin B and its enzymatic activity is associated with different pathological conditions, including cancer. Cathepsin B overexpression in tumor tissues makes this enzyme an important target for smart delivery systems, responsive to the activity of this enzyme. The generation of technologies which therapeutic effect is activated as a result of cathepsin B cleavage provides an opportunity for tumor-targeted therapy and controlled drug release. In this review, we summarized different technologies designed to improve current cancer treatments responsive to the activity of this enzyme that were shown to play a key role in disease progression and response to the treatment.