Cargando…
Exploring Regularization Methods for Domain Generalization in Accelerometer-Based Human Activity Recognition
The study of Domain Generalization (DG) has gained considerable momentum in the Machine Learning (ML) field. Human Activity Recognition (HAR) inherently encompasses diverse domains (e.g., users, devices, or datasets), rendering it an ideal testbed for exploring Domain Generalization. Building upon r...
Autores principales: | Bento, Nuno, Rebelo, Joana, Carreiro, André V., Ravache, François, Barandas, Marília |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386236/ https://www.ncbi.nlm.nih.gov/pubmed/37514805 http://dx.doi.org/10.3390/s23146511 |
Ejemplares similares
-
Comparing Handcrafted Features and Deep Neural Representations for Domain Generalization in Human Activity Recognition
por: Bento, Nuno, et al.
Publicado: (2022) -
An Infrastructure-Free Magnetic-Based Indoor Positioning System with Deep Learning
por: Fernandes, Letícia, et al.
Publicado: (2020) -
Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors
por: Moreira, Dinis, et al.
Publicado: (2021) -
On the benefits of representation regularization in invariance based domain generalization
por: Shui, Changjian, et al.
Publicado: (2022) -
Generalization Bounds Derived IPM-Based Regularization for Domain Adaptation
por: Meng, Juan, et al.
Publicado: (2016)