Cargando…
Network embedding framework for driver gene discovery by combining functional and structural information
Comprehensive analysis of multiple data sets can identify potential driver genes for various cancers. In recent years, driver gene discovery based on massive mutation data and gene interaction networks has attracted increasing attention, but there is still a need to explore combining functional and...
Autores principales: | Chu, Xin, Guan, Boxin, Dai, Lingyun, Liu, Jin-xing, Li, Feng, Shang, Junliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386255/ https://www.ncbi.nlm.nih.gov/pubmed/37516822 http://dx.doi.org/10.1186/s12864-023-09515-x |
Ejemplares similares
-
NEXGB: A Network Embedding Framework for Anticancer Drug Combination Prediction
por: Meng, Fanjie, et al.
Publicado: (2022) -
NESM: a network embedding method for tumor stratification by integrating multi-omics data
por: Li, Feng, et al.
Publicado: (2022) -
Effects of Multi-Omics Characteristics on Identification of Driver Genes Using Machine Learning Algorithms
por: Li, Feng, et al.
Publicado: (2022) -
BLNIMDA: identifying miRNA-disease associations based on weighted bi-level network
por: Shang, Junliang, et al.
Publicado: (2022) -
Multi-Objective Artificial Bee Colony Algorithm Based on Scale-Free Network for Epistasis Detection
por: Gu, Yijun, et al.
Publicado: (2022)