Cargando…
Evaluating imputation methods for single-cell RNA-seq data
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) enables the high-throughput profiling of gene expression at the single-cell level. However, overwhelming dropouts within data may obscure meaningful biological signals. Various imputation methods have recently been developed to address this problem....
Autores principales: | Cheng, Yi, Ma, Xiuli, Yuan, Lang, Sun, Zhaoguo, Wang, Pingzhang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386301/ https://www.ncbi.nlm.nih.gov/pubmed/37507764 http://dx.doi.org/10.1186/s12859-023-05417-7 |
Ejemplares similares
-
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Li, Wei Vivian, et al.
Publicado: (2018) -
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
por: Talwar, Divyanshu, et al.
Publicado: (2018) -
AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders
por: Xu, Li, et al.
Publicado: (2021) -
McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
por: Mongia, Aanchal, et al.
Publicado: (2019) -
Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq
por: Raevskiy, Mikhail, et al.
Publicado: (2023)