Cargando…
LSD-YOLOv5: A Steel Strip Surface Defect Detection Algorithm Based on Lightweight Network and Enhanced Feature Fusion Mode
In the field of metallurgy, the timely and accurate detection of surface defects on metallic materials is a crucial quality control task. However, current defect detection approaches face challenges with large model parameters and low detection rates. To address these issues, this paper proposes a l...
Autores principales: | Zhao, Huan, Wan, Fang, Lei, Guangbo, Xiong, Ying, Xu, Li, Xu, Chengzhi, Zhou, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386349/ https://www.ncbi.nlm.nih.gov/pubmed/37514852 http://dx.doi.org/10.3390/s23146558 |
Ejemplares similares
-
Strip steel surface defect detection based on lightweight YOLOv5
por: Zhang, Yongping, et al.
Publicado: (2023) -
SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode
por: Liu, Haiying, et al.
Publicado: (2022) -
Strip Surface Defect Detection Algorithm Based on YOLOv5
por: Wang, Han, et al.
Publicado: (2023) -
STMS-YOLOv5: A Lightweight Algorithm for Gear Surface Defect Detection
por: Yan, Rui, et al.
Publicado: (2023) -
Lightweight Helmet Detection Algorithm Using an Improved YOLOv4 †
por: Chen, Junhua, et al.
Publicado: (2023)