Cargando…

Deep Learning for Microfluidic-Assisted Caenorhabditis elegans Multi-Parameter Identification Using YOLOv7

The Caenorhabditis elegans (C. elegans) is an ideal model organism for studying human diseases and genetics due to its transparency and suitability for optical imaging. However, manually sorting a large population of C. elegans for experiments is tedious and inefficient. The microfluidic-assisted C....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jie, Liu, Shuhe, Yuan, Hang, Yong, Ruiqi, Duan, Sixuan, Li, Yifan, Spencer, Joseph, Lim, Eng Gee, Yu, Limin, Song, Pengfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386376/
https://www.ncbi.nlm.nih.gov/pubmed/37512650
http://dx.doi.org/10.3390/mi14071339
Descripción
Sumario:The Caenorhabditis elegans (C. elegans) is an ideal model organism for studying human diseases and genetics due to its transparency and suitability for optical imaging. However, manually sorting a large population of C. elegans for experiments is tedious and inefficient. The microfluidic-assisted C. elegans sorting chip is considered a promising platform to address this issue due to its automation and ease of operation. Nevertheless, automated C. elegans sorting with multiple parameters requires efficient identification technology due to the different research demands for worm phenotypes. To improve the efficiency and accuracy of multi-parameter sorting, we developed a deep learning model using You Only Look Once (YOLO)v7 to detect and recognize C. elegans automatically. We used a dataset of 3931 annotated worms in microfluidic chips from various studies. Our model showed higher precision in automated C. elegans identification than YOLOv5 and Faster R-CNN, achieving a mean average precision (mAP) at a 0.5 intersection over a union (mAP@0.5) threshold of 99.56%. Additionally, our model demonstrated good generalization ability, achieving an mAP@0.5 of 94.21% on an external validation set. Our model can efficiently and accurately identify and calculate multiple phenotypes of worms, including size, movement speed, and fluorescence. The multi-parameter identification model can improve sorting efficiency and potentially promote the development of automated and integrated microfluidic platforms.