Cargando…
Mobility-Aware Federated Learning Considering Multiple Networks
Federated learning (FL) is a distributed training method for machine learning models (ML) that maintain data ownership on users. However, this distributed training approach can lead to variations in efficiency due to user behaviors or characteristics. For instance, mobility can hinder training by ca...
Autores principales: | Macedo, Daniel, Santos, Danilo, Perkusich, Angelo, Valadares, Dalton C. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386473/ https://www.ncbi.nlm.nih.gov/pubmed/37514581 http://dx.doi.org/10.3390/s23146286 |
Ejemplares similares
-
Federated Learning for Privacy-Aware Human Mobility Modeling
por: Ezequiel, Castro Elizondo Jose, et al.
Publicado: (2022) -
Privacy-Preserving Blockchain Technologies
por: Valadares, Dalton Cézane Gomes, et al.
Publicado: (2023) -
Service selection in mobile environments: considering multiple users and context-awareness
por: Heinrich, Bernd, et al.
Publicado: (2018) -
A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems
por: Silva, Lenardo C., et al.
Publicado: (2015) -
FedBranched: Leveraging Federated Learning for Anomaly-Aware Load Forecasting in Energy Networks
por: Manzoor, Habib Ullah, et al.
Publicado: (2023)