Cargando…
Deriving Convergent and Divergent Metabolomic Correlates of Pulmonary Arterial Hypertension
High-dimensional metabolomics analyses may identify convergent and divergent markers, potentially representing aligned or orthogonal disease pathways that underly conditions such as pulmonary arterial hypertension (PAH). Using a comprehensive PAH metabolomics dataset, we applied six different conven...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386502/ https://www.ncbi.nlm.nih.gov/pubmed/37512509 http://dx.doi.org/10.3390/metabo13070802 |
_version_ | 1785081681002102784 |
---|---|
author | Alotaibi, Mona Liu, Yunxian Magalang, Gino A. Kwan, Alan C. Ebinger, Joseph E. Nichols, William C. Pauciulo, Michael W. Jain, Mohit Cheng, Susan |
author_facet | Alotaibi, Mona Liu, Yunxian Magalang, Gino A. Kwan, Alan C. Ebinger, Joseph E. Nichols, William C. Pauciulo, Michael W. Jain, Mohit Cheng, Susan |
author_sort | Alotaibi, Mona |
collection | PubMed |
description | High-dimensional metabolomics analyses may identify convergent and divergent markers, potentially representing aligned or orthogonal disease pathways that underly conditions such as pulmonary arterial hypertension (PAH). Using a comprehensive PAH metabolomics dataset, we applied six different conventional and statistical learning techniques to identify analytes associated with key outcomes and compared the results. We found that certain conventional techniques, such as Bonferroni/FDR correction, prioritized metabolites that tended to be highly intercorrelated. Statistical learning techniques generally agreed with conventional techniques on the top-ranked metabolites, but were also more inclusive of different metabolite groups. In particular, conventional methods prioritized sterol and oxylipin metabolites in relation to idiopathic versus non-idiopathic PAH, whereas statistical learning methods tended to prioritize eicosanoid, bile acid, fatty acid, and fatty acyl ester metabolites. Our findings demonstrate how conventional and statistical learning techniques can offer both concordant or discordant results. In the case of a rare yet morbid condition, such as PAH, convergent metabolites may reflect common pathways to shared disease outcomes whereas divergent metabolites could signal either distinct etiologic mechanisms, different sub-phenotypes, or varying stages of disease progression. Notwithstanding the need to investigate the mechanisms underlying the observed results, our main findings suggest that a multi-method approach to statistical analyses of high-dimensional human metabolomics datasets could effectively broaden the scientific yield from a given study design. |
format | Online Article Text |
id | pubmed-10386502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103865022023-07-30 Deriving Convergent and Divergent Metabolomic Correlates of Pulmonary Arterial Hypertension Alotaibi, Mona Liu, Yunxian Magalang, Gino A. Kwan, Alan C. Ebinger, Joseph E. Nichols, William C. Pauciulo, Michael W. Jain, Mohit Cheng, Susan Metabolites Article High-dimensional metabolomics analyses may identify convergent and divergent markers, potentially representing aligned or orthogonal disease pathways that underly conditions such as pulmonary arterial hypertension (PAH). Using a comprehensive PAH metabolomics dataset, we applied six different conventional and statistical learning techniques to identify analytes associated with key outcomes and compared the results. We found that certain conventional techniques, such as Bonferroni/FDR correction, prioritized metabolites that tended to be highly intercorrelated. Statistical learning techniques generally agreed with conventional techniques on the top-ranked metabolites, but were also more inclusive of different metabolite groups. In particular, conventional methods prioritized sterol and oxylipin metabolites in relation to idiopathic versus non-idiopathic PAH, whereas statistical learning methods tended to prioritize eicosanoid, bile acid, fatty acid, and fatty acyl ester metabolites. Our findings demonstrate how conventional and statistical learning techniques can offer both concordant or discordant results. In the case of a rare yet morbid condition, such as PAH, convergent metabolites may reflect common pathways to shared disease outcomes whereas divergent metabolites could signal either distinct etiologic mechanisms, different sub-phenotypes, or varying stages of disease progression. Notwithstanding the need to investigate the mechanisms underlying the observed results, our main findings suggest that a multi-method approach to statistical analyses of high-dimensional human metabolomics datasets could effectively broaden the scientific yield from a given study design. MDPI 2023-06-28 /pmc/articles/PMC10386502/ /pubmed/37512509 http://dx.doi.org/10.3390/metabo13070802 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alotaibi, Mona Liu, Yunxian Magalang, Gino A. Kwan, Alan C. Ebinger, Joseph E. Nichols, William C. Pauciulo, Michael W. Jain, Mohit Cheng, Susan Deriving Convergent and Divergent Metabolomic Correlates of Pulmonary Arterial Hypertension |
title | Deriving Convergent and Divergent Metabolomic Correlates of Pulmonary Arterial Hypertension |
title_full | Deriving Convergent and Divergent Metabolomic Correlates of Pulmonary Arterial Hypertension |
title_fullStr | Deriving Convergent and Divergent Metabolomic Correlates of Pulmonary Arterial Hypertension |
title_full_unstemmed | Deriving Convergent and Divergent Metabolomic Correlates of Pulmonary Arterial Hypertension |
title_short | Deriving Convergent and Divergent Metabolomic Correlates of Pulmonary Arterial Hypertension |
title_sort | deriving convergent and divergent metabolomic correlates of pulmonary arterial hypertension |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386502/ https://www.ncbi.nlm.nih.gov/pubmed/37512509 http://dx.doi.org/10.3390/metabo13070802 |
work_keys_str_mv | AT alotaibimona derivingconvergentanddivergentmetabolomiccorrelatesofpulmonaryarterialhypertension AT liuyunxian derivingconvergentanddivergentmetabolomiccorrelatesofpulmonaryarterialhypertension AT magalangginoa derivingconvergentanddivergentmetabolomiccorrelatesofpulmonaryarterialhypertension AT kwanalanc derivingconvergentanddivergentmetabolomiccorrelatesofpulmonaryarterialhypertension AT ebingerjosephe derivingconvergentanddivergentmetabolomiccorrelatesofpulmonaryarterialhypertension AT nicholswilliamc derivingconvergentanddivergentmetabolomiccorrelatesofpulmonaryarterialhypertension AT pauciulomichaelw derivingconvergentanddivergentmetabolomiccorrelatesofpulmonaryarterialhypertension AT jainmohit derivingconvergentanddivergentmetabolomiccorrelatesofpulmonaryarterialhypertension AT chengsusan derivingconvergentanddivergentmetabolomiccorrelatesofpulmonaryarterialhypertension |