Cargando…
CoSOV1Net: A Cone- and Spatial-Opponent Primary Visual Cortex-Inspired Neural Network for Lightweight Salient Object Detection
Salient object-detection models attempt to mimic the human visual system’s ability to select relevant objects in images. To this end, the development of deep neural networks on high-end computers has recently achieved high performance. However, developing deep neural network models with the same per...
Autores principales: | Ndayikengurukiye, Didier, Mignotte, Max |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386563/ https://www.ncbi.nlm.nih.gov/pubmed/37514744 http://dx.doi.org/10.3390/s23146450 |
Ejemplares similares
-
Salient Object Detection by LTP Texture Characterization on Opposing Color Pairs under SLICO Superpixel Constraint
por: Ndayikengurukiye, Didier, et al.
Publicado: (2022) -
Cone opponent functional domains in primary visual cortex combine signals for color appearance mechanisms
por: Li, Peichao, et al.
Publicado: (2022) -
On the Distribution of Salient Objects in Web Images and Its Influence on Salient Object Detection
por: Schauerte, Boris, et al.
Publicado: (2015) -
The spatial distribution of ERGs reflecting luminance and L-/M-cone-opponent signals
por: Vidal, Kallene Summer, et al.
Publicado: (2021) -
Local anaphor licensing in an SOV language: implications for retrieval strategies
por: Kush, Dave, et al.
Publicado: (2014)