Cargando…
Self-Enhanced Mixed Attention Network for Three-Modal Images Few-Shot Semantic Segmentation
As an important computer vision technique, image segmentation has been widely used in various tasks. However, in some extreme cases, the insufficient illumination would result in a great impact on the performance of the model. So more and more fully supervised methods use multi-modal images as their...
Autores principales: | Song, Kechen, Zhang, Yiming, Bao, Yanqi, Zhao, Ying, Yan, Yunhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386587/ https://www.ncbi.nlm.nih.gov/pubmed/37514905 http://dx.doi.org/10.3390/s23146612 |
Ejemplares similares
-
CLIP-Driven Prototype Network for Few-Shot Semantic Segmentation
por: Guo, Shi-Cheng, et al.
Publicado: (2023) -
MCEENet: Multi-Scale Context Enhancement and Edge-Assisted Network for Few-Shot Semantic Segmentation
por: Zhou, Hongjie, et al.
Publicado: (2023) -
Few-shot segmentation with duplex network and attention augmented module
por: Zeng, Sifu, et al.
Publicado: (2023) -
Aggregating pairwise semantic differences for few-shot claim verification
por: Zeng, Xia, et al.
Publicado: (2022) -
SSA-Net: Spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning
por: Wang, Xiaoyan, et al.
Publicado: (2022)