Cargando…

Federated Learning-Based Spectrum Occupancy Detection

Dynamic access to the spectrum is essential for radiocommunication and its limited spectrum resources. The key element of dynamic spectrum access systems is most often effective spectrum occupancy detection. In many cases, machine learning algorithms improve this detection’s effectiveness. Given the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kułacz, Łukasz, Kliks, Adrian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386618/
https://www.ncbi.nlm.nih.gov/pubmed/37514730
http://dx.doi.org/10.3390/s23146436
Descripción
Sumario:Dynamic access to the spectrum is essential for radiocommunication and its limited spectrum resources. The key element of dynamic spectrum access systems is most often effective spectrum occupancy detection. In many cases, machine learning algorithms improve this detection’s effectiveness. Given the recent trend of using federated learning, we present a federated learning algorithm for distributed spectrum occupancy detection. This idea improves overall spectrum-detection effectiveness, simultaneously keeping a low amount of data that needs to be exchanged between sensors. The proposed solution achieves a higher accuracy score than separate and autonomous models used without federated learning. Additionally, the proposed solution shows some sort of resistance to faulty sensors encountered in the system. The results of the work presented in the article are based on actual signal samples collected in the laboratory. The proposed algorithm is effective (in terms of spectrum occupancy detection and amount of exchanged data), especially in the context of a set of sensors in which there are faulty sensors.