Cargando…
Modification and Evaluation of Attention-Based Deep Neural Network for Structural Crack Detection
Cracks are one of the safety-evaluation indicators for structures, providing a maintenance basis for the health and safety of structures in service. Most structural inspections rely on visual observation, while bridges rely on traditional methods such as bridge inspection vehicles, which are ineffic...
Autores principales: | Yuan, Hangming, Jin, Tao, Ye, Xiaowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386673/ https://www.ncbi.nlm.nih.gov/pubmed/37514590 http://dx.doi.org/10.3390/s23146295 |
Ejemplares similares
-
Concrete Surface Crack Recognition Based on Coordinate Attention Neural Networks
por: Zhang, Yuhao, et al.
Publicado: (2022) -
Automatic Detection of Cracks in Cracked Tooth Based on Binary Classification Convolutional Neural Networks
por: Guo, Juncheng, et al.
Publicado: (2022) -
Efficient attention-based deep encoder and decoder for automatic crack segmentation
por: Kang, Dong H, et al.
Publicado: (2021) -
Research on the Efficiency of Bridge Crack Detection by Coupling Deep Learning Frameworks with Convolutional Neural Networks
por: Ma, Kaifeng, et al.
Publicado: (2023) -
Performance Evaluation of Deep CNN-Based Crack Detection and Localization Techniques for Concrete Structures
por: Ali, Luqman, et al.
Publicado: (2021)