Cargando…
Machine learning for prediction of asthma exacerbations among asthmatic patients: a systematic review and meta-analysis
BACKGROUND: Asthma exacerbations reduce the patient’s quality of life and are also responsible for significant disease burdens and economic costs. Machine learning (ML)-based prediction models have been increasingly developed to predict asthma exacerbations in recent years. This systematic review an...
Autores principales: | Xiong, Shiqiu, Chen, Wei, Jia, Xinyu, Jia, Yang, Liu, Chuanhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386701/ https://www.ncbi.nlm.nih.gov/pubmed/37507662 http://dx.doi.org/10.1186/s12890-023-02570-w |
Ejemplares similares
-
IgE-expressing long-lived plasma cells in persistent sensitization
por: Xiong, Shiqiu, et al.
Publicado: (2022) -
Association between primary immunodeficiency and asthma exacerbation in adult asthmatics
por: Lee, So-Hee, et al.
Publicado: (2020) -
P58 - The role of osteopontin and vitamin D in school-age asthmatic children for predicting asthma exacerbation
por: Uysal, Pınar, et al.
Publicado: (2014) -
Risk Factors Predicting Severe Asthma Exacerbations in Adult Asthmatics: A Real-World Clinical Evidence
por: Ban, Ga-Young, et al.
Publicado: (2021) -
Severe and Moderate Asthma Exacerbations in Asthmatic Children and Exposure to Ambient Air Pollutants
por: Tétreault, Louis-Francois, et al.
Publicado: (2016)