Cargando…
WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing
Rolling bearings are crucial mechanical components in the mechanical industry. Timely intervention and diagnosis of system faults are essential for reducing economic losses and ensuring product productivity. To further enhance the exploration of unlabeled time-series data and conduct a more comprehe...
Autores principales: | Liu, Ruozhu, Wang, Xingbing, Kumar, Anil, Sun, Bintao, Zhou, Yuqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386744/ https://www.ncbi.nlm.nih.gov/pubmed/37512779 http://dx.doi.org/10.3390/mi14071467 |
Ejemplares similares
-
Rolling Bearing Fault Detection System and Experiment Based on Deep Learning
por: Zhang, Bo
Publicado: (2022) -
Intelligent Diagnosis of Rolling Bearings Fault Based on Multisignal Fusion and MTF-ResNet
por: He, Kecheng, et al.
Publicado: (2023) -
Few-Shot Rolling Bearing Fault Diagnosis with Metric-Based Meta Learning
por: Wang, Sihan, et al.
Publicado: (2020) -
End-to-End Continuous/Discontinuous Feature Fusion Method with Attention for Rolling Bearing Fault Diagnosis
por: Zheng, Jianbo, et al.
Publicado: (2022) -
A Novel Deep Learning Model for the Detection and Identification of Rolling Element-Bearing Faults
por: Shenfield, Alex, et al.
Publicado: (2020)