Cargando…
StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens
BACKGROUND: The identification of tumor T cell antigens (TTCAs) is crucial for providing insights into their functional mechanisms and utilizing their potential in anticancer vaccines development. In this context, TTCAs are highly promising. Meanwhile, experimental technologies for discovering and c...
Autores principales: | Charoenkwan, Phasit, Schaduangrat, Nalini, Shoombuatong, Watshara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386778/ https://www.ncbi.nlm.nih.gov/pubmed/37507654 http://dx.doi.org/10.1186/s12859-023-05421-x |
Ejemplares similares
-
Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework
por: Charoenkwan, Phasit, et al.
Publicado: (2022) -
TIPred: a novel stacked ensemble approach for the accelerated discovery of tyrosinase inhibitory peptides
por: Charoenkwan, Phasit, et al.
Publicado: (2023) -
StackPR is a new computational approach for large-scale identification of progesterone receptor antagonists using the stacking strategy
por: Schaduangrat, Nalini, et al.
Publicado: (2022) -
TROLLOPE: A novel sequence-based stacked approach for the accelerated discovery of linear T-cell epitopes of hepatitis C virus
por: Charoenkwan, Phasit, et al.
Publicado: (2023) -
SCORPION is a stacking-based ensemble learning framework for accurate prediction of phage virion proteins
por: Ahmad, Saeed, et al.
Publicado: (2022)