Cargando…
In vivo quantitative MRI: T(1) and T(2) measurements of the human brain at 0.064 T
OBJECTIVE: To measure healthy brain [Formula: see text] and [Formula: see text] relaxation times at 0.064 T. MATERIALS AND METHODS: [Formula: see text] and [Formula: see text] relaxation times were measured in vivo for 10 healthy volunteers using a 0.064 T magnetic resonance imaging (MRI) system and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386946/ https://www.ncbi.nlm.nih.gov/pubmed/37208553 http://dx.doi.org/10.1007/s10334-023-01095-x |
Sumario: | OBJECTIVE: To measure healthy brain [Formula: see text] and [Formula: see text] relaxation times at 0.064 T. MATERIALS AND METHODS: [Formula: see text] and [Formula: see text] relaxation times were measured in vivo for 10 healthy volunteers using a 0.064 T magnetic resonance imaging (MRI) system and for 10 test samples on both the MRI and a separate 0.064 T nuclear magnetic resonance (NMR) system. In vivo [Formula: see text] and [Formula: see text] values are reported for white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) for automatic segmentation regions and manual regions of interest (ROIs). RESULTS: [Formula: see text] sample measurements on the MRI system were within 10% of the NMR measurement for 9 samples, and one sample was within 11%. Eight [Formula: see text] sample MRI measurements were within 25% of the NMR measurement, and the two longest [Formula: see text] samples had more than 25% variation. Automatic segmentations generally resulted in larger [Formula: see text] and [Formula: see text] estimates than manual ROIs. DISCUSSION: [Formula: see text] and [Formula: see text] times for brain tissue were measured at 0.064 T. Test samples demonstrated accuracy in WM and GM ranges of values but underestimated long [Formula: see text] in the CSF range. This work contributes to measuring quantitative MRI properties of the human body at a range of field strengths. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10334-023-01095-x. |
---|