Cargando…
Dissecting Psychiatric Heterogeneity and Comorbidity with Core Region-Based Machine Learning
Machine learning approaches are increasingly being applied to neuroimaging data from patients with psychiatric disorders to extract brain-based features for diagnosis and prognosis. The goal of this review is to discuss recent practices for evaluating machine learning applications to obsessive-compu...
Autores principales: | Lv, Qian, Zeljic, Kristina, Zhao, Shaoling, Zhang, Jiangtao, Zhang, Jianmin, Wang, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387015/ https://www.ncbi.nlm.nih.gov/pubmed/37093448 http://dx.doi.org/10.1007/s12264-023-01057-2 |
Ejemplares similares
-
The relationship between bullying, learning disorders and psychiatric comorbidity
por: Weinreich, Lior, et al.
Publicado: (2023) -
Editorial: Molecular advances and applications of machine learning in understanding autism and comorbid psychiatric disorders
por: Salloum-Asfar, Salam
Publicado: (2023) -
High Psychiatric Morbidity and Comorbidity Among Female Prisoners in Hunan, China
por: Zhong, Shaoling, et al.
Publicado: (2020) -
Psychiatric comorbid disorders of cognition: a machine learning approach using 1175 UK Biobank participants
por: Li, Chenlu, et al.
Publicado: (2020) -
Machine learning approaches for parsing comorbidity/heterogeneity in antisociality and substance use disorders: A primer
por: Shane, Matthew S., et al.
Publicado: (2021)