Cargando…
Improving Mortality Risk Prediction with Routine Clinical Data: A Practical Machine Learning Model Based on eICU Patients
PURPOSE: Mortality risk prediction helps clinicians make better decisions in patient healthcare. However, existing severity scoring systems or algorithms used in intensive care units (ICUs) often rely on laborious manual collection of complex variables and lack sufficient validation in diverse clini...
Autores principales: | Zhao, Shangping, Tang, Guanxiu, Liu, Pan, Wang, Qingyong, Li, Guohui, Ding, Zhaoyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387249/ https://www.ncbi.nlm.nih.gov/pubmed/37525648 http://dx.doi.org/10.2147/IJGM.S391423 |
Ejemplares similares
-
E-CatBoost: An efficient machine learning framework for predicting ICU mortality using the eICU Collaborative Research Database
por: Safaei, Nima, et al.
Publicado: (2022) -
Benchmarking machine learning models on multi-centre eICU critical care dataset
por: Sheikhalishahi, Seyedmostafa, et al.
Publicado: (2020) -
eICU program favorably affects clinical and economic outcomes
por: Leong, Jason R, et al.
Publicado: (2005) -
Circadian rhythm in critically ill patients: Insights from the eICU Database
por: Beyer, Sebastian E., et al.
Publicado: (2021) -
Association between serum phosphate and in-hospital mortality of patients with AECOPD: A retrospective analysis on eICU database
por: Li, Siqi, et al.
Publicado: (2023)