Cargando…
Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC
INTRODUCTION: The Democratic Republic of Congo (DRC) has experienced widespread community transmission of SARS-CoV-2 and has recorded four successive waves from March 2020 to March 2022. The objective of this study is to determine the socio-demographic characteristics of Covid-19 patients during the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MTSI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387320/ https://www.ncbi.nlm.nih.gov/pubmed/37525685 http://dx.doi.org/10.48327/mtsi.v3i2.2023.356 |
_version_ | 1785081858424307712 |
---|---|
author | AKINOCHO, El-Mouksitou KASONGO, Matthieu MOERMAN, Kristel SERE, Felipe COPPIETERS, Yves |
author_facet | AKINOCHO, El-Mouksitou KASONGO, Matthieu MOERMAN, Kristel SERE, Felipe COPPIETERS, Yves |
author_sort | AKINOCHO, El-Mouksitou |
collection | PubMed |
description | INTRODUCTION: The Democratic Republic of Congo (DRC) has experienced widespread community transmission of SARS-CoV-2 and has recorded four successive waves from March 2020 to March 2022. The objective of this study is to determine the socio-demographic characteristics of Covid-19 patients during these epidemic waves in the province of Kongo central and to identify factors associated with deaths. MATERIAL AND METHODS: This is a cross-sectional study of Covid-19 data from the provincial surveillance system. The data consisted of epidemiological surveillance data, laboratory data (tests), hospital data and patient follow-up data. We determined the characteristics of positive cases throughout the period and implemented logistic regression of factors associated with death. RESULTS: During the successive waves, 9, 573 positive cases were reported in the province, 546 cases in the first wave and 6, 346 in the fourth wave. Seven positive cases out of 10 concerned people aged 25 to 64. The districts of Matadi, Moanda and Mbanza-Ngungu were the most affected. Age above 64 [OR: 7.2 CI:5.1-10.3] and wave 2 [OR: 4.4 CI:1.6-12.4] were the factors statistically associated with death. CONCLUSION: As in other African settings, age, comorbidities, higher socio-professional level and living in urban areas were the major risk factors for severe forms of the disease and death. Our analysis underlines the importance of collecting and analysing several epidemiological variables down to the provincial level over time for a better continuous knowledge of the situation. |
format | Online Article Text |
id | pubmed-10387320 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MTSI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103873202023-07-31 Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC AKINOCHO, El-Mouksitou KASONGO, Matthieu MOERMAN, Kristel SERE, Felipe COPPIETERS, Yves Med Trop Sante Int Santé Publique INTRODUCTION: The Democratic Republic of Congo (DRC) has experienced widespread community transmission of SARS-CoV-2 and has recorded four successive waves from March 2020 to March 2022. The objective of this study is to determine the socio-demographic characteristics of Covid-19 patients during these epidemic waves in the province of Kongo central and to identify factors associated with deaths. MATERIAL AND METHODS: This is a cross-sectional study of Covid-19 data from the provincial surveillance system. The data consisted of epidemiological surveillance data, laboratory data (tests), hospital data and patient follow-up data. We determined the characteristics of positive cases throughout the period and implemented logistic regression of factors associated with death. RESULTS: During the successive waves, 9, 573 positive cases were reported in the province, 546 cases in the first wave and 6, 346 in the fourth wave. Seven positive cases out of 10 concerned people aged 25 to 64. The districts of Matadi, Moanda and Mbanza-Ngungu were the most affected. Age above 64 [OR: 7.2 CI:5.1-10.3] and wave 2 [OR: 4.4 CI:1.6-12.4] were the factors statistically associated with death. CONCLUSION: As in other African settings, age, comorbidities, higher socio-professional level and living in urban areas were the major risk factors for severe forms of the disease and death. Our analysis underlines the importance of collecting and analysing several epidemiological variables down to the provincial level over time for a better continuous knowledge of the situation. MTSI 2023-04-18 /pmc/articles/PMC10387320/ /pubmed/37525685 http://dx.doi.org/10.48327/mtsi.v3i2.2023.356 Text en Copyright © 2023 SFMTSI https://creativecommons.org/licenses/by/4.0/Cet article en libre accès est distribué selon les termes de la licence Creative Commons CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Santé Publique AKINOCHO, El-Mouksitou KASONGO, Matthieu MOERMAN, Kristel SERE, Felipe COPPIETERS, Yves Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC |
title | Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC |
title_full | Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC |
title_fullStr | Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC |
title_full_unstemmed | Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC |
title_short | Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC |
title_sort | caractéristiques épidémiologiques de l’épidémie de covid-19 entre 2020 et 2022 au kongo central, rdc |
topic | Santé Publique |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387320/ https://www.ncbi.nlm.nih.gov/pubmed/37525685 http://dx.doi.org/10.48327/mtsi.v3i2.2023.356 |
work_keys_str_mv | AT akinochoelmouksitou caracteristiquesepidemiologiquesdelepidemiedecovid19entre2020et2022aukongocentralrdc AT kasongomatthieu caracteristiquesepidemiologiquesdelepidemiedecovid19entre2020et2022aukongocentralrdc AT moermankristel caracteristiquesepidemiologiquesdelepidemiedecovid19entre2020et2022aukongocentralrdc AT serefelipe caracteristiquesepidemiologiquesdelepidemiedecovid19entre2020et2022aukongocentralrdc AT coppietersyves caracteristiquesepidemiologiquesdelepidemiedecovid19entre2020et2022aukongocentralrdc |