Cargando…

Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC

INTRODUCTION: The Democratic Republic of Congo (DRC) has experienced widespread community transmission of SARS-CoV-2 and has recorded four successive waves from March 2020 to March 2022. The objective of this study is to determine the socio-demographic characteristics of Covid-19 patients during the...

Descripción completa

Detalles Bibliográficos
Autores principales: AKINOCHO, El-Mouksitou, KASONGO, Matthieu, MOERMAN, Kristel, SERE, Felipe, COPPIETERS, Yves
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MTSI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387320/
https://www.ncbi.nlm.nih.gov/pubmed/37525685
http://dx.doi.org/10.48327/mtsi.v3i2.2023.356
_version_ 1785081858424307712
author AKINOCHO, El-Mouksitou
KASONGO, Matthieu
MOERMAN, Kristel
SERE, Felipe
COPPIETERS, Yves
author_facet AKINOCHO, El-Mouksitou
KASONGO, Matthieu
MOERMAN, Kristel
SERE, Felipe
COPPIETERS, Yves
author_sort AKINOCHO, El-Mouksitou
collection PubMed
description INTRODUCTION: The Democratic Republic of Congo (DRC) has experienced widespread community transmission of SARS-CoV-2 and has recorded four successive waves from March 2020 to March 2022. The objective of this study is to determine the socio-demographic characteristics of Covid-19 patients during these epidemic waves in the province of Kongo central and to identify factors associated with deaths. MATERIAL AND METHODS: This is a cross-sectional study of Covid-19 data from the provincial surveillance system. The data consisted of epidemiological surveillance data, laboratory data (tests), hospital data and patient follow-up data. We determined the characteristics of positive cases throughout the period and implemented logistic regression of factors associated with death. RESULTS: During the successive waves, 9, 573 positive cases were reported in the province, 546 cases in the first wave and 6, 346 in the fourth wave. Seven positive cases out of 10 concerned people aged 25 to 64. The districts of Matadi, Moanda and Mbanza-Ngungu were the most affected. Age above 64 [OR: 7.2 CI:5.1-10.3] and wave 2 [OR: 4.4 CI:1.6-12.4] were the factors statistically associated with death. CONCLUSION: As in other African settings, age, comorbidities, higher socio-professional level and living in urban areas were the major risk factors for severe forms of the disease and death. Our analysis underlines the importance of collecting and analysing several epidemiological variables down to the provincial level over time for a better continuous knowledge of the situation.
format Online
Article
Text
id pubmed-10387320
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MTSI
record_format MEDLINE/PubMed
spelling pubmed-103873202023-07-31 Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC AKINOCHO, El-Mouksitou KASONGO, Matthieu MOERMAN, Kristel SERE, Felipe COPPIETERS, Yves Med Trop Sante Int Santé Publique INTRODUCTION: The Democratic Republic of Congo (DRC) has experienced widespread community transmission of SARS-CoV-2 and has recorded four successive waves from March 2020 to March 2022. The objective of this study is to determine the socio-demographic characteristics of Covid-19 patients during these epidemic waves in the province of Kongo central and to identify factors associated with deaths. MATERIAL AND METHODS: This is a cross-sectional study of Covid-19 data from the provincial surveillance system. The data consisted of epidemiological surveillance data, laboratory data (tests), hospital data and patient follow-up data. We determined the characteristics of positive cases throughout the period and implemented logistic regression of factors associated with death. RESULTS: During the successive waves, 9, 573 positive cases were reported in the province, 546 cases in the first wave and 6, 346 in the fourth wave. Seven positive cases out of 10 concerned people aged 25 to 64. The districts of Matadi, Moanda and Mbanza-Ngungu were the most affected. Age above 64 [OR: 7.2 CI:5.1-10.3] and wave 2 [OR: 4.4 CI:1.6-12.4] were the factors statistically associated with death. CONCLUSION: As in other African settings, age, comorbidities, higher socio-professional level and living in urban areas were the major risk factors for severe forms of the disease and death. Our analysis underlines the importance of collecting and analysing several epidemiological variables down to the provincial level over time for a better continuous knowledge of the situation. MTSI 2023-04-18 /pmc/articles/PMC10387320/ /pubmed/37525685 http://dx.doi.org/10.48327/mtsi.v3i2.2023.356 Text en Copyright © 2023 SFMTSI https://creativecommons.org/licenses/by/4.0/Cet article en libre accès est distribué selon les termes de la licence Creative Commons CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Santé Publique
AKINOCHO, El-Mouksitou
KASONGO, Matthieu
MOERMAN, Kristel
SERE, Felipe
COPPIETERS, Yves
Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC
title Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC
title_full Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC
title_fullStr Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC
title_full_unstemmed Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC
title_short Caractéristiques épidémiologiques de l’épidémie de Covid-19 entre 2020 et 2022 au Kongo central, RDC
title_sort caractéristiques épidémiologiques de l’épidémie de covid-19 entre 2020 et 2022 au kongo central, rdc
topic Santé Publique
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387320/
https://www.ncbi.nlm.nih.gov/pubmed/37525685
http://dx.doi.org/10.48327/mtsi.v3i2.2023.356
work_keys_str_mv AT akinochoelmouksitou caracteristiquesepidemiologiquesdelepidemiedecovid19entre2020et2022aukongocentralrdc
AT kasongomatthieu caracteristiquesepidemiologiquesdelepidemiedecovid19entre2020et2022aukongocentralrdc
AT moermankristel caracteristiquesepidemiologiquesdelepidemiedecovid19entre2020et2022aukongocentralrdc
AT serefelipe caracteristiquesepidemiologiquesdelepidemiedecovid19entre2020et2022aukongocentralrdc
AT coppietersyves caracteristiquesepidemiologiquesdelepidemiedecovid19entre2020et2022aukongocentralrdc