Cargando…

Cell-type-specific population dynamics of diverse reward computations

Computational analysis of cellular activity has developed largely independently of modern transcriptomic cell typology, but integrating these approaches may be essential for full insight into cellular-level mechanisms underlying brain function and dysfunction. Applying this approach to the habenula...

Descripción completa

Detalles Bibliográficos
Autores principales: Sylwestrak, Emily L., Jo, YoungJu, Vesuna, Sam, Wang, Xiao, Holcomb, Blake, Tien, Rebecca H., Kim, Doo Kyung, Fenno, Lief, Ramakrishnan, Charu, Allen, William E., Chen, Ritchie, Shenoy, Krishna V., Sussillo, David, Deisseroth, Karl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387374/
https://www.ncbi.nlm.nih.gov/pubmed/36113428
http://dx.doi.org/10.1016/j.cell.2022.08.019
_version_ 1785081869727956992
author Sylwestrak, Emily L.
Jo, YoungJu
Vesuna, Sam
Wang, Xiao
Holcomb, Blake
Tien, Rebecca H.
Kim, Doo Kyung
Fenno, Lief
Ramakrishnan, Charu
Allen, William E.
Chen, Ritchie
Shenoy, Krishna V.
Sussillo, David
Deisseroth, Karl
author_facet Sylwestrak, Emily L.
Jo, YoungJu
Vesuna, Sam
Wang, Xiao
Holcomb, Blake
Tien, Rebecca H.
Kim, Doo Kyung
Fenno, Lief
Ramakrishnan, Charu
Allen, William E.
Chen, Ritchie
Shenoy, Krishna V.
Sussillo, David
Deisseroth, Karl
author_sort Sylwestrak, Emily L.
collection PubMed
description Computational analysis of cellular activity has developed largely independently of modern transcriptomic cell typology, but integrating these approaches may be essential for full insight into cellular-level mechanisms underlying brain function and dysfunction. Applying this approach to the habenula (a structure with diverse, intermingled molecular, anatomical, and computational features), we identified encoding of reward-predictive cues and reward outcomes in distinct genetically defined neural populations, including TH(+) cells and Tac1(+) cells. Data from genetically targeted recordings were used to train an optimized nonlinear dynamical systems model and revealed activity dynamics consistent with a line attractor. High-density, cell-type-specific electrophysiological recordings and optogenetic perturbation provided supporting evidence for this model. Reverse-engineering predicted how Tac1(+) cells might integrate reward history, which was complemented by in vivo experimentation. This integrated approach describes a process by which data-driven computational models of population activity can generate and frame actionable hypotheses for cell-type-specific investigation in biological systems.
format Online
Article
Text
id pubmed-10387374
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-103873742023-07-30 Cell-type-specific population dynamics of diverse reward computations Sylwestrak, Emily L. Jo, YoungJu Vesuna, Sam Wang, Xiao Holcomb, Blake Tien, Rebecca H. Kim, Doo Kyung Fenno, Lief Ramakrishnan, Charu Allen, William E. Chen, Ritchie Shenoy, Krishna V. Sussillo, David Deisseroth, Karl Cell Article Computational analysis of cellular activity has developed largely independently of modern transcriptomic cell typology, but integrating these approaches may be essential for full insight into cellular-level mechanisms underlying brain function and dysfunction. Applying this approach to the habenula (a structure with diverse, intermingled molecular, anatomical, and computational features), we identified encoding of reward-predictive cues and reward outcomes in distinct genetically defined neural populations, including TH(+) cells and Tac1(+) cells. Data from genetically targeted recordings were used to train an optimized nonlinear dynamical systems model and revealed activity dynamics consistent with a line attractor. High-density, cell-type-specific electrophysiological recordings and optogenetic perturbation provided supporting evidence for this model. Reverse-engineering predicted how Tac1(+) cells might integrate reward history, which was complemented by in vivo experimentation. This integrated approach describes a process by which data-driven computational models of population activity can generate and frame actionable hypotheses for cell-type-specific investigation in biological systems. 2022-09-15 /pmc/articles/PMC10387374/ /pubmed/36113428 http://dx.doi.org/10.1016/j.cell.2022.08.019 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Sylwestrak, Emily L.
Jo, YoungJu
Vesuna, Sam
Wang, Xiao
Holcomb, Blake
Tien, Rebecca H.
Kim, Doo Kyung
Fenno, Lief
Ramakrishnan, Charu
Allen, William E.
Chen, Ritchie
Shenoy, Krishna V.
Sussillo, David
Deisseroth, Karl
Cell-type-specific population dynamics of diverse reward computations
title Cell-type-specific population dynamics of diverse reward computations
title_full Cell-type-specific population dynamics of diverse reward computations
title_fullStr Cell-type-specific population dynamics of diverse reward computations
title_full_unstemmed Cell-type-specific population dynamics of diverse reward computations
title_short Cell-type-specific population dynamics of diverse reward computations
title_sort cell-type-specific population dynamics of diverse reward computations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387374/
https://www.ncbi.nlm.nih.gov/pubmed/36113428
http://dx.doi.org/10.1016/j.cell.2022.08.019
work_keys_str_mv AT sylwestrakemilyl celltypespecificpopulationdynamicsofdiverserewardcomputations
AT joyoungju celltypespecificpopulationdynamicsofdiverserewardcomputations
AT vesunasam celltypespecificpopulationdynamicsofdiverserewardcomputations
AT wangxiao celltypespecificpopulationdynamicsofdiverserewardcomputations
AT holcombblake celltypespecificpopulationdynamicsofdiverserewardcomputations
AT tienrebeccah celltypespecificpopulationdynamicsofdiverserewardcomputations
AT kimdookyung celltypespecificpopulationdynamicsofdiverserewardcomputations
AT fennolief celltypespecificpopulationdynamicsofdiverserewardcomputations
AT ramakrishnancharu celltypespecificpopulationdynamicsofdiverserewardcomputations
AT allenwilliame celltypespecificpopulationdynamicsofdiverserewardcomputations
AT chenritchie celltypespecificpopulationdynamicsofdiverserewardcomputations
AT shenoykrishnav celltypespecificpopulationdynamicsofdiverserewardcomputations
AT sussillodavid celltypespecificpopulationdynamicsofdiverserewardcomputations
AT deisserothkarl celltypespecificpopulationdynamicsofdiverserewardcomputations