Cargando…
Federated generalized linear mixed models for collaborative genome-wide association studies
Federated association testing is a powerful approach to conduct large-scale association studies where sites share intermediate statistics through a central server. There are, however, several standing challenges. Confounding factors like population stratification should be carefully modeled across s...
Autores principales: | Li, Wentao, Chen, Han, Jiang, Xiaoqian, Harmanci, Arif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387571/ https://www.ncbi.nlm.nih.gov/pubmed/37529100 http://dx.doi.org/10.1016/j.isci.2023.107227 |
Ejemplares similares
-
COLLAGENE enables privacy-aware federated and collaborative genomic data analysis
por: Li, Wentao, et al.
Publicado: (2023) -
Privacy-preserving federated genome-wide association studies via dynamic sampling
por: Wang, Xinyue, et al.
Publicado: (2023) -
Federated learning algorithms for generalized mixed-effects model (GLMM) on horizontally partitioned data from distributed sources
por: Li, Wentao, et al.
Publicado: (2022) -
Linear and Generalized Linear Mixed Models and Their Applications
por: Jiang, Jiming
Publicado: (2007) -
Linear and generalized linear mixed models and their applications
por: Jiang, Jiming, et al.
Publicado: (2021)