Cargando…
RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans
Projecting from most cell surfaces, cilia serve as important hubs for sensory and signaling processes and have been linked to a variety of human disorders, including Bardet-Biedl Syndrome (BBS), Meckel-Gruber Syndrome (MKS), Nephronophthisis (NPHP), and Joubert Syndrome, and these diseases are colle...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Scientific and Technological Research Council of Turkey (TUBITAK)
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388106/ https://www.ncbi.nlm.nih.gov/pubmed/37529113 http://dx.doi.org/10.55730/1300-0152.2642 |
Sumario: | Projecting from most cell surfaces, cilia serve as important hubs for sensory and signaling processes and have been linked to a variety of human disorders, including Bardet-Biedl Syndrome (BBS), Meckel-Gruber Syndrome (MKS), Nephronophthisis (NPHP), and Joubert Syndrome, and these diseases are collectively known as a ciliopathy. DCDC2 is a ciliopathy protein that localizes to cilia; nevertheless, our understanding of the role of DCDC2 in cilia is still limited. We employed C. elegans to investigate the function of C. elegans RPI-1, a Caenorhabditis elegans ortholog of human DCDC2, in cilia and found that C. elegans RPI-1 localizes to the entire ciliary axoneme, but is not present in the transition zone and basal body. We generated a null mutant of C. elegans rpi-1, and our analysis with a range of fluorescence-based ciliary markers revealed that DCDC2 and nephronophthisis 4 (NPHP-4/NPHP4) display functional redundant roles in regulating cilia length and cilia positions. Taken together, our analysis discovered a novel genetic interaction between two ciliopathy disease genes (RPI-1/DCDC2 and NPHP-4/NPHP4) in C. elegans. |
---|