Cargando…
Network Evolution Model-based prediction of tumor mutation burden from radiomic-clinical features in endometrial cancers
BACKGROUND: Endometrial Cancer (EC) is one of the most prevalent malignancies that affect the female population globally. In the context of immunotherapy, Tumor Mutation Burden (TMB) in the DNA polymerase epsilon (POLE) subtype of this cancer holds promise as a viable therapeutic target. METHODS: We...
Autores principales: | Tan, Qing, Wang, Qian, Jin, Suoqin, Zhou, Fuling, Zou, Xiufen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388464/ https://www.ncbi.nlm.nih.gov/pubmed/37525139 http://dx.doi.org/10.1186/s12885-023-11118-4 |
Ejemplares similares
-
Predicting Tumor Mutation Burden and EGFR Mutation Using Clinical and Radiomic Features in Patients with Malignant Pulmonary Nodules
por: Yin, Wenda, et al.
Publicado: (2022) -
Construction of the influenza A virus infection-induced cell-specific inflammatory regulatory network based on mutual information and optimization
por: Jin, Suoqin, et al.
Publicado: (2013) -
Characterizing and controlling the inflammatory network during influenza A virus infection
por: Jin, Suoqin, et al.
Publicado: (2014) -
Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis
por: Li, Yuanyuan, et al.
Publicado: (2015) -
Identification of Intercellular Signaling Changes Across Conditions and Their Influence on Intracellular Signaling Response From Multiple Single-Cell Datasets
por: Hao, Mengqian, et al.
Publicado: (2021)