Cargando…

Evaluating large language models on a highly-specialized topic, radiation oncology physics

PURPOSE: We present the first study to investigate Large Language Models (LLMs) in answering radiation oncology physics questions. Because popular exams like AP Physics, LSAT, and GRE have large test-taker populations and ample test preparation resources in circulation, they may not allow for accura...

Descripción completa

Detalles Bibliográficos
Autores principales: Holmes, Jason, Liu, Zhengliang, Zhang, Lian, Ding, Yuzhen, Sio, Terence T., McGee, Lisa A., Ashman, Jonathan B., Li, Xiang, Liu, Tianming, Shen, Jiajian, Liu, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388568/
https://www.ncbi.nlm.nih.gov/pubmed/37529688
http://dx.doi.org/10.3389/fonc.2023.1219326
Descripción
Sumario:PURPOSE: We present the first study to investigate Large Language Models (LLMs) in answering radiation oncology physics questions. Because popular exams like AP Physics, LSAT, and GRE have large test-taker populations and ample test preparation resources in circulation, they may not allow for accurately assessing the true potential of LLMs. This paper proposes evaluating LLMs on a highly-specialized topic, radiation oncology physics, which may be more pertinent to scientific and medical communities in addition to being a valuable benchmark of LLMs. METHODS: We developed an exam consisting of 100 radiation oncology physics questions based on our expertise. Four LLMs, ChatGPT (GPT-3.5), ChatGPT (GPT-4), Bard (LaMDA), and BLOOMZ, were evaluated against medical physicists and non-experts. The performance of ChatGPT (GPT-4) was further explored by being asked to explain first, then answer. The deductive reasoning capability of ChatGPT (GPT-4) was evaluated using a novel approach (substituting the correct answer with “None of the above choices is the correct answer.”). A majority vote analysis was used to approximate how well each group could score when working together. RESULTS: ChatGPT GPT-4 outperformed all other LLMs and medical physicists, on average, with improved accuracy when prompted to explain before answering. ChatGPT (GPT-3.5 and GPT-4) showed a high level of consistency in its answer choices across a number of trials, whether correct or incorrect, a characteristic that was not observed in the human test groups or Bard (LaMDA). In evaluating deductive reasoning ability, ChatGPT (GPT-4) demonstrated surprising accuracy, suggesting the potential presence of an emergent ability. Finally, although ChatGPT (GPT-4) performed well overall, its intrinsic properties did not allow for further improvement when scoring based on a majority vote across trials. In contrast, a team of medical physicists were able to greatly outperform ChatGPT (GPT-4) using a majority vote. CONCLUSION: This study suggests a great potential for LLMs to work alongside radiation oncology experts as highly knowledgeable assistants.