Cargando…
Evaluating large language models on a highly-specialized topic, radiation oncology physics
PURPOSE: We present the first study to investigate Large Language Models (LLMs) in answering radiation oncology physics questions. Because popular exams like AP Physics, LSAT, and GRE have large test-taker populations and ample test preparation resources in circulation, they may not allow for accura...
Autores principales: | Holmes, Jason, Liu, Zhengliang, Zhang, Lian, Ding, Yuzhen, Sio, Terence T., McGee, Lisa A., Ashman, Jonathan B., Li, Xiang, Liu, Tianming, Shen, Jiajian, Liu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388568/ https://www.ncbi.nlm.nih.gov/pubmed/37529688 http://dx.doi.org/10.3389/fonc.2023.1219326 |
Ejemplares similares
-
Beam mask and sliding window-facilitated deep learning-based accurate and efficient dose prediction for pencil beam scanning proton therapy
por: Zhang, Lian, et al.
Publicado: (2023) -
Introduction to the special edition on immunotherapy and radiation oncology
por: Bornstein, Sophia, et al.
Publicado: (2018) -
Internal Qualification and Credentialing of Radiation Oncology Physicists to Perform Patient Special Procedures
por: Mills, Michael D.
Publicado: (2014) -
The Role of Radiation Oncology in Immuno‐Oncology
por: Meng, Xiangjiao, et al.
Publicado: (2019) -
Advances in Radiation Oncology for Pancreatic Cancer: An Updated Review
por: Liu, Jason, et al.
Publicado: (2022)