Cargando…
LWSleepNet: A lightweight attention-based deep learning model for sleep staging with singlechannel EEG
INTRODUCTION: Sleep is vital to human health, and sleep staging is an essential process in sleep assessment. However, manual classification is an inefficient task. Along with the increased demand for portable sleep quality detection devices, lightweight automatic sleep staging needs to be developed....
Autores principales: | Yang, Chenguang, Li, Baozhu, Li, Yamei, He, Yixuan, Zhang, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388613/ https://www.ncbi.nlm.nih.gov/pubmed/37529540 http://dx.doi.org/10.1177/20552076231188206 |
Ejemplares similares
-
CAttSleepNet: Automatic End-to-End Sleep Staging Using Attention-Based Deep Neural Networks on Single-Channel EEG
por: Li, Tingting, et al.
Publicado: (2022) -
Deep-agriNet: a lightweight attention-based encoder-decoder framework for crop identification using multispectral images
por: Hu, Yimin, et al.
Publicado: (2023) -
HHI-AttentionNet: An Enhanced Human-Human Interaction Recognition Method Based on a Lightweight Deep Learning Model with Attention Network from CSI
por: Shafiqul, Islam Md, et al.
Publicado: (2022) -
A lightweight automatic sleep staging method for children using single-channel EEG based on edge artificial intelligence
por: Zhu, Liqiang, et al.
Publicado: (2021) -
Multi-Layer Graph Attention Network for Sleep Stage Classification Based on EEG
por: Wang, Qi, et al.
Publicado: (2022)