Cargando…
The deep learning algorithm estimates chest radiograph-based sex and age as independent risk factors for future cardiovascular outcomes
OBJECTIVES: Chest X-rays (CXRs) convey much illegible physiological information that deep learning model (DLM) has been reported interpreting successfully. Since the electrocardiogram age established by DLM was revealed as a heart biological marker, we hypothesize that CXR age has similar potential...
Autores principales: | Liao, Hao-Chun, Lin, Chin, Wang, Chih-Hung, Fang, Wen-Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388631/ https://www.ncbi.nlm.nih.gov/pubmed/37529539 http://dx.doi.org/10.1177/20552076231191055 |
Ejemplares similares
-
Using Deep Neural Networks for Predicting Age and Sex in Healthy Adult Chest Radiographs
por: Yang, Chung-Yi, et al.
Publicado: (2021) -
Deep learning to estimate lung disease mortality from chest radiographs
por: Weiss, Jakob, et al.
Publicado: (2023) -
Deep-learning algorithm to detect fibrosing interstitial lung disease on chest radiographs
por: Nishikiori, Hirotaka, et al.
Publicado: (2023) -
Automated estimation of total lung volume using chest radiographs and deep learning
por: Sogancioglu, Ecem, et al.
Publicado: (2022) -
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs
por: Cheng, Chi-Tung, et al.
Publicado: (2019)