Cargando…

Discovering NDM-1 inhibitors using molecular substructure embeddings representations

NDM-1 (New-Delhi-Metallo-β-lactamase-1) is an enzyme developed by bacteria that is implicated in bacteria resistance to almost all known antibiotics. In this study, we deliver a new, curated NDM-1 bioactivities database, along with a set of unifying rules for managing different activity properties a...

Descripción completa

Detalles Bibliográficos
Autores principales: Papastergiou, Thomas, Azé, Jérôme, Bringay, Sandra, Louet, Maxime, Poncelet, Pascal, Rosales-Hurtado, Miyanou, Vo-Hoang, Yen, Licznar-Fajardo, Patricia, Docquier, Jean-Denis, Gavara, Laurent
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389050/
https://www.ncbi.nlm.nih.gov/pubmed/37498676
http://dx.doi.org/10.1515/jib-2022-0050
_version_ 1785082213358895104
author Papastergiou, Thomas
Azé, Jérôme
Bringay, Sandra
Louet, Maxime
Poncelet, Pascal
Rosales-Hurtado, Miyanou
Vo-Hoang, Yen
Licznar-Fajardo, Patricia
Docquier, Jean-Denis
Gavara, Laurent
author_facet Papastergiou, Thomas
Azé, Jérôme
Bringay, Sandra
Louet, Maxime
Poncelet, Pascal
Rosales-Hurtado, Miyanou
Vo-Hoang, Yen
Licznar-Fajardo, Patricia
Docquier, Jean-Denis
Gavara, Laurent
author_sort Papastergiou, Thomas
collection PubMed
description NDM-1 (New-Delhi-Metallo-β-lactamase-1) is an enzyme developed by bacteria that is implicated in bacteria resistance to almost all known antibiotics. In this study, we deliver a new, curated NDM-1 bioactivities database, along with a set of unifying rules for managing different activity properties and inconsistencies. We define the activity classification problem in terms of Multiple Instance Learning, employing embeddings corresponding to molecular substructures and present an ensemble ranking and classification framework, relaying on a k-fold Cross Validation method employing a per fold hyper-parameter optimization procedure, showing promising generalization ability. The MIL paradigm displayed an improvement up to 45.7 %, in terms of Balanced Accuracy, in comparison to the classical Machine Learning paradigm. Moreover, we investigate different compact molecular representations, based on atomic or bi-atomic substructures. Finally, we scanned the Drugbank for strongly active compounds and we present the top-15 ranked compounds.
format Online
Article
Text
id pubmed-10389050
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher De Gruyter
record_format MEDLINE/PubMed
spelling pubmed-103890502023-08-01 Discovering NDM-1 inhibitors using molecular substructure embeddings representations Papastergiou, Thomas Azé, Jérôme Bringay, Sandra Louet, Maxime Poncelet, Pascal Rosales-Hurtado, Miyanou Vo-Hoang, Yen Licznar-Fajardo, Patricia Docquier, Jean-Denis Gavara, Laurent J Integr Bioinform Workshop NDM-1 (New-Delhi-Metallo-β-lactamase-1) is an enzyme developed by bacteria that is implicated in bacteria resistance to almost all known antibiotics. In this study, we deliver a new, curated NDM-1 bioactivities database, along with a set of unifying rules for managing different activity properties and inconsistencies. We define the activity classification problem in terms of Multiple Instance Learning, employing embeddings corresponding to molecular substructures and present an ensemble ranking and classification framework, relaying on a k-fold Cross Validation method employing a per fold hyper-parameter optimization procedure, showing promising generalization ability. The MIL paradigm displayed an improvement up to 45.7 %, in terms of Balanced Accuracy, in comparison to the classical Machine Learning paradigm. Moreover, we investigate different compact molecular representations, based on atomic or bi-atomic substructures. Finally, we scanned the Drugbank for strongly active compounds and we present the top-15 ranked compounds. De Gruyter 2023-07-28 /pmc/articles/PMC10389050/ /pubmed/37498676 http://dx.doi.org/10.1515/jib-2022-0050 Text en © 2023 the author(s), published by De Gruyter, Berlin/Boston https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License.
spellingShingle Workshop
Papastergiou, Thomas
Azé, Jérôme
Bringay, Sandra
Louet, Maxime
Poncelet, Pascal
Rosales-Hurtado, Miyanou
Vo-Hoang, Yen
Licznar-Fajardo, Patricia
Docquier, Jean-Denis
Gavara, Laurent
Discovering NDM-1 inhibitors using molecular substructure embeddings representations
title Discovering NDM-1 inhibitors using molecular substructure embeddings representations
title_full Discovering NDM-1 inhibitors using molecular substructure embeddings representations
title_fullStr Discovering NDM-1 inhibitors using molecular substructure embeddings representations
title_full_unstemmed Discovering NDM-1 inhibitors using molecular substructure embeddings representations
title_short Discovering NDM-1 inhibitors using molecular substructure embeddings representations
title_sort discovering ndm-1 inhibitors using molecular substructure embeddings representations
topic Workshop
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389050/
https://www.ncbi.nlm.nih.gov/pubmed/37498676
http://dx.doi.org/10.1515/jib-2022-0050
work_keys_str_mv AT papastergiouthomas discoveringndm1inhibitorsusingmolecularsubstructureembeddingsrepresentations
AT azejerome discoveringndm1inhibitorsusingmolecularsubstructureembeddingsrepresentations
AT bringaysandra discoveringndm1inhibitorsusingmolecularsubstructureembeddingsrepresentations
AT louetmaxime discoveringndm1inhibitorsusingmolecularsubstructureembeddingsrepresentations
AT ponceletpascal discoveringndm1inhibitorsusingmolecularsubstructureembeddingsrepresentations
AT rosaleshurtadomiyanou discoveringndm1inhibitorsusingmolecularsubstructureembeddingsrepresentations
AT vohoangyen discoveringndm1inhibitorsusingmolecularsubstructureembeddingsrepresentations
AT licznarfajardopatricia discoveringndm1inhibitorsusingmolecularsubstructureembeddingsrepresentations
AT docquierjeandenis discoveringndm1inhibitorsusingmolecularsubstructureembeddingsrepresentations
AT gavaralaurent discoveringndm1inhibitorsusingmolecularsubstructureembeddingsrepresentations