Cargando…
Effects of extracts from various parts of invasive Solidago species on the germination and growth of native grassland plant species
Allelopathy is an important factor influencing whether an invasive plant species can become successfully established in a new range through disrupting the germination and growth of native plant species. Goldenrods (Solidago species) are one of the most widespread invasive taxa in Central Europe of N...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389070/ https://www.ncbi.nlm.nih.gov/pubmed/37529210 http://dx.doi.org/10.7717/peerj.15676 |
Sumario: | Allelopathy is an important factor influencing whether an invasive plant species can become successfully established in a new range through disrupting the germination and growth of native plant species. Goldenrods (Solidago species) are one of the most widespread invasive taxa in Central Europe of North American origin. Owing to their high environmental impact and wide distribution range, invasive Solidago species should be controlled in Europe, and the areas invaded by them should be restored. Numerous studies have reported the allelopathic effects of Solidago gigantea and Solidago canadensis, but the results are inconsistent regarding differences in the allelopathic effects of particular plant parts and in the sensitivity to Solidago allelopathic effects among native species as well as between the two invasive species themselves. In this study, we aimed to analyse the effect of water extracts from S. canadensis and S. gigantea parts (roots, rhizomes, stems, leaves, and inflorescences) on the germination and initial growth of seedlings of 13 grassland species that typically grow in Central Europe. The tested grassland species differed in susceptibility to Solidago allelopathy, with the most resistant species being Schedonorus pratensis, Lolium perenne, Trifolium pratense, Daucus carota and Leucanthemum vulgare. The inhibitory effect of 10% water extracts from leaves and flowers were stronger than those from rhizomes, roots, and stems without leaves, regardless of the Solidago species. Our study results imply that reducing the allelopathic effect of Solidago during habitat restoration requires removal of the aboveground parts, including fallen leaves. The allelopathic effects of roots and rhizomes seem to be of secondary importance. |
---|