Cargando…

Comparing the Effectiveness of Smartphone Applications in the Measurement of Interpupillary Distance

Purpose To determine the accuracy of three smartphone applications in the measurement of interpupillary distance (IPD). Methods This study compared measurements from three smartphone applications to measurements obtained by a single trained examiner using a digital pupilometer in 44 subjects. The me...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Kenneth D, Jaafar, Muhammed, Stoakes, Isabella M, Hoopes, Phillip C, Moshirfar, Majid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389117/
https://www.ncbi.nlm.nih.gov/pubmed/37529827
http://dx.doi.org/10.7759/cureus.42744
Descripción
Sumario:Purpose To determine the accuracy of three smartphone applications in the measurement of interpupillary distance (IPD). Methods This study compared measurements from three smartphone applications to measurements obtained by a single trained examiner using a digital pupilometer in 44 subjects. The mean absolute error (MAE) of IPD prediction by each application was compared. Additionally, the frequency at which each application measured IPD within ± 0.05 mm, ± 0.10 mm, ± 0.25 mm, ± 0.50 mm, ± 0.75 mm, and ± 1.00 mm of the digital pupilometer measurement was determined. Results The Eye Measure (Dotty Digital, Sydney, New South Wales, Australia) and Warby Parker (Warby Parker, New York, New York) applications had significantly lower MAE of IPD measurements (0.511364 mm) compared to the PDCheck AR (EyeQue Corp., Newark, California) application (1.375 mm). The Warby Parker application most frequently obtained accurate IPD measurements within the following ranges: ± 0.05 mm, ± 0.10 mm, ± 0.25 mm, ± 0.50 mm, ± 0.75 mm, and ± 1.00 mm. Conclusion Of the three smartphone applications compared in this study, the Warby Parker application performed to the highest degree of accuracy and may serve as an adequate alternative when conventional IPD measurement methods are either unavailable or unable to be performed accurately.