Cargando…

Expanding lignin thermal property space by fractionation and covalent modification

To fully exploit kraft lignin's potential in material applications, we need to achieve tight control over those key physicochemical lignin parameters that ultimately determine, and serve as proxy for, the properties of lignin-derived materials. Here, we show that fractionation combined with sys...

Descripción completa

Detalles Bibliográficos
Autores principales: Riddell, Luke A., Enthoven, Floris J. P. A., Lindner, Jean-Pierre B., Meirer, Florian, Bruijnincx, Pieter C. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389295/
https://www.ncbi.nlm.nih.gov/pubmed/38013986
http://dx.doi.org/10.1039/d3gc01055d
_version_ 1785082267446542336
author Riddell, Luke A.
Enthoven, Floris J. P. A.
Lindner, Jean-Pierre B.
Meirer, Florian
Bruijnincx, Pieter C. A.
author_facet Riddell, Luke A.
Enthoven, Floris J. P. A.
Lindner, Jean-Pierre B.
Meirer, Florian
Bruijnincx, Pieter C. A.
author_sort Riddell, Luke A.
collection PubMed
description To fully exploit kraft lignin's potential in material applications, we need to achieve tight control over those key physicochemical lignin parameters that ultimately determine, and serve as proxy for, the properties of lignin-derived materials. Here, we show that fractionation combined with systematic (incremental) modification provides a powerful strategy to expand and controllably tailor lignin property space. In particular, the glass transition temperature (T(g)) of a typical kraft lignin could be tuned over a remarkable and unprecedented 213 °C. Remarkably, for all fractions the T(g) proved to be highly linearly correlated with the degree of derivatisation by allylation, offering such tight control over the T(g) of the lignin and ultimately the ability to ‘dial-in’ this key property. Importantly, such control over this proxy parameter indeed translated well to lignin-based thiol–ene thermosetting films, whose T(g)s thus covered a range from 2–124 °C. This proof of concept suggests this approach to be a powerful and generalisable one, allowing a biorefinery or downstream operation to consciously and reliably tailor lignins to predictable specifications which fit their desired application.
format Online
Article
Text
id pubmed-10389295
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-103892952023-08-01 Expanding lignin thermal property space by fractionation and covalent modification Riddell, Luke A. Enthoven, Floris J. P. A. Lindner, Jean-Pierre B. Meirer, Florian Bruijnincx, Pieter C. A. Green Chem Chemistry To fully exploit kraft lignin's potential in material applications, we need to achieve tight control over those key physicochemical lignin parameters that ultimately determine, and serve as proxy for, the properties of lignin-derived materials. Here, we show that fractionation combined with systematic (incremental) modification provides a powerful strategy to expand and controllably tailor lignin property space. In particular, the glass transition temperature (T(g)) of a typical kraft lignin could be tuned over a remarkable and unprecedented 213 °C. Remarkably, for all fractions the T(g) proved to be highly linearly correlated with the degree of derivatisation by allylation, offering such tight control over the T(g) of the lignin and ultimately the ability to ‘dial-in’ this key property. Importantly, such control over this proxy parameter indeed translated well to lignin-based thiol–ene thermosetting films, whose T(g)s thus covered a range from 2–124 °C. This proof of concept suggests this approach to be a powerful and generalisable one, allowing a biorefinery or downstream operation to consciously and reliably tailor lignins to predictable specifications which fit their desired application. The Royal Society of Chemistry 2023-07-13 /pmc/articles/PMC10389295/ /pubmed/38013986 http://dx.doi.org/10.1039/d3gc01055d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Riddell, Luke A.
Enthoven, Floris J. P. A.
Lindner, Jean-Pierre B.
Meirer, Florian
Bruijnincx, Pieter C. A.
Expanding lignin thermal property space by fractionation and covalent modification
title Expanding lignin thermal property space by fractionation and covalent modification
title_full Expanding lignin thermal property space by fractionation and covalent modification
title_fullStr Expanding lignin thermal property space by fractionation and covalent modification
title_full_unstemmed Expanding lignin thermal property space by fractionation and covalent modification
title_short Expanding lignin thermal property space by fractionation and covalent modification
title_sort expanding lignin thermal property space by fractionation and covalent modification
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389295/
https://www.ncbi.nlm.nih.gov/pubmed/38013986
http://dx.doi.org/10.1039/d3gc01055d
work_keys_str_mv AT riddelllukea expandingligninthermalpropertyspacebyfractionationandcovalentmodification
AT enthovenflorisjpa expandingligninthermalpropertyspacebyfractionationandcovalentmodification
AT lindnerjeanpierreb expandingligninthermalpropertyspacebyfractionationandcovalentmodification
AT meirerflorian expandingligninthermalpropertyspacebyfractionationandcovalentmodification
AT bruijnincxpieterca expandingligninthermalpropertyspacebyfractionationandcovalentmodification