Cargando…
Artificial intelligence–enabled clinical trials might be a faster way to perform rapid clinical trials and counter future pandemics: lessons learned from the COVID-19 period
Autores principales: | Chakraborty, Chiranjib, Bhattacharya, Manojit, Dhama, Kuldeep, Agoramoorthy, Govindasamy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389411/ https://www.ncbi.nlm.nih.gov/pubmed/36906740 http://dx.doi.org/10.1097/JS9.0000000000000088 |
Ejemplares similares
-
Hybrid immunity against COVID-19 in different countries with a special emphasis on the Indian scenario during the Omicron period
por: Bhattacharya, Manojit, et al.
Publicado: (2022) -
Natural selection of the D614G mutation in SARS-CoV-2 Omicron (B.1.1.529) variant and its subvariants
por: Chakraborty, Chiranjib, et al.
Publicado: (2023) -
The Drug Repurposing for COVID-19 Clinical Trials Provide Very Effective Therapeutic Combinations: Lessons Learned From Major Clinical Studies
por: Chakraborty, Chiranjib, et al.
Publicado: (2021) -
Omicron variant (B.1.1.529) of SARS-CoV-2: understanding mutations in the genome, S-glycoprotein, and antibody-binding regions
por: Bhattacharya, Manojit, et al.
Publicado: (2022) -
A comprehensive analysis of the mutational landscape of the newly emerging Omicron (B.1.1.529) variant and comparison of mutations with VOCs and VOIs
por: Chakraborty, Chiranjib, et al.
Publicado: (2022)