Cargando…

Risk prediction models for mortality and readmission in patients with acute heart failure: A protocol for systematic review, critical appraisal, and meta-analysis

INTRODUCTION: A considerable number of risk models, which predict outcomes in mortality and readmission rates, have been developed for patients with acute heart failure (AHF) to help stratify patients by risk level, improve decision making, and save medical resources. However, some models exist in a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xuecheng, Zhou, Kehua, You, Liangzhen, Zhang, Jingjing, Chen, Ying, Dai, Hengheng, Wan, Siqi, Guan, Zhiyue, Hu, Mingzhi, Kang, Jing, Liu, Yan, Shang, Hongcai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389735/
https://www.ncbi.nlm.nih.gov/pubmed/37523342
http://dx.doi.org/10.1371/journal.pone.0283307
Descripción
Sumario:INTRODUCTION: A considerable number of risk models, which predict outcomes in mortality and readmission rates, have been developed for patients with acute heart failure (AHF) to help stratify patients by risk level, improve decision making, and save medical resources. However, some models exist in a clinically useful manner such as risk scores or online calculators, while others are not, providing only limited information that prevents clinicians and patients from using them. The reported performance of some models varied greatly when predicting at multiple time points and being validated in different cohorts, which causes model users uncertainty about the predictive accuracy of these models. The foregoing leads to users facing difficulties in the selection of prediction models, and even sometimes being reluctant to utilize models. Therefore, a systematic review to assess the performance at multiple time points, applicability, and clinical impact of extant prediction models for mortality and readmission in AHF patients is essential. It may facilitate the selection of models for clinical implementation. METHOD AND ANALYSIS: Four databases will be searched from their inception onwards. Multivariable prognostic models for mortality and/or readmission in AHF patients will be eligible for review. Characteristics and the clinical impact of included models will be summarized qualitatively and quantitatively, and models with clinical utility will be compared with those without. Predictive performance measures of included models with an analogous clinical outcome appraised repeatedly, will be compared and synthesized by a meta-analysis. Meta-analysis of validation studies for a common prediction model at the same time point will also be performed. We will also provide an overview of critical appraisal of the risk of bias, applicability, and reporting transparency of included studies using the PROBAST tool and TRIPOD statement. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration number CRD42021256416.