Cargando…
Improved prediction of drug-induced liver injury literature using natural language processing and machine learning methods
Drug-induced liver injury (DILI) is an adverse hepatic drug reaction that can potentially lead to life-threatening liver failure. Previously published work in the scientific literature on DILI has provided valuable insights for the understanding of hepatotoxicity as well as drug development. However...
Autores principales: | Oh, Jung Hun, Tannenbaum, Allen, Deasy, Joseph O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390074/ https://www.ncbi.nlm.nih.gov/pubmed/37529777 http://dx.doi.org/10.3389/fgene.2023.1161047 |
Ejemplares similares
-
Identification of biological correlates associated with respiratory failure in COVID-19
por: Oh, Jung Hun, et al.
Publicado: (2020) -
vWCluster: Vector-valued optimal transport for network based clustering using multi-omics data in breast cancer
por: Zhu, Jiening, et al.
Publicado: (2022) -
Characterizing Cancer Drug Response and Biological Correlates: A Geometric Network Approach
por: Pouryahya, Maryam, et al.
Publicado: (2018) -
Applied natural language processing with Python: implementing machine learning and deep learning algorithms for natural language processing
por: Beysolow, Taweh
Publicado: (2018) -
Genomic Surveillance of COVID-19 Variants With Language Models and Machine Learning
por: Nagpal, Sargun, et al.
Publicado: (2022)