Cargando…
The investigation of parameters affecting Ibrutinib release from chitosan/tripolyphosphate/carbon nanofiber composite microspheres
This study described the performance of carbon nanofiber modified chitosan (CNF@CS) composite microspheres for the controlled release of the Ibrutinib (IBR) drug. The surface morphology, particle sizes, and functional group contents of the microspheres were characterized by attenuated total reflecti...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Scientific and Technological Research Council of Turkey (TUBITAK)
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390210/ https://www.ncbi.nlm.nih.gov/pubmed/37529729 http://dx.doi.org/10.55730/1300-0527.3466 |
_version_ | 1785082431546589184 |
---|---|
author | ARMUTCU, Canan |
author_facet | ARMUTCU, Canan |
author_sort | ARMUTCU, Canan |
collection | PubMed |
description | This study described the performance of carbon nanofiber modified chitosan (CNF@CS) composite microspheres for the controlled release of the Ibrutinib (IBR) drug. The surface morphology, particle sizes, and functional group contents of the microspheres were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron, and optical microscopy measurements. The obtained data demonstrated that the addition of CNF to the microsphere increased the encapsulation efficiency of the IBR while allowing the controlled and gradual release of the drug. In terms of the encapsulation efficiency and drug release rate, IBR@CS/TPP/CNF microspheres, achieving drug encapsulation efficiency of 83.09%, have the most suitable formulation according to the comparative studies. Furthermore, according to Korsmeyer-Peppas kinetic model, IBR release mechanism was anomalous diffusion (swelling-controlled behavior and diffusion.) because the IBR release profile was completed in 78 h under optimized conditions. Therefore, the development of CNF based chitosan microsphere is a promising approach to assure appropriate dosage, safety, and improving drug efficacy. |
format | Online Article Text |
id | pubmed-10390210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Scientific and Technological Research Council of Turkey (TUBITAK) |
record_format | MEDLINE/PubMed |
spelling | pubmed-103902102023-08-01 The investigation of parameters affecting Ibrutinib release from chitosan/tripolyphosphate/carbon nanofiber composite microspheres ARMUTCU, Canan Turk J Chem Research Article This study described the performance of carbon nanofiber modified chitosan (CNF@CS) composite microspheres for the controlled release of the Ibrutinib (IBR) drug. The surface morphology, particle sizes, and functional group contents of the microspheres were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron, and optical microscopy measurements. The obtained data demonstrated that the addition of CNF to the microsphere increased the encapsulation efficiency of the IBR while allowing the controlled and gradual release of the drug. In terms of the encapsulation efficiency and drug release rate, IBR@CS/TPP/CNF microspheres, achieving drug encapsulation efficiency of 83.09%, have the most suitable formulation according to the comparative studies. Furthermore, according to Korsmeyer-Peppas kinetic model, IBR release mechanism was anomalous diffusion (swelling-controlled behavior and diffusion.) because the IBR release profile was completed in 78 h under optimized conditions. Therefore, the development of CNF based chitosan microsphere is a promising approach to assure appropriate dosage, safety, and improving drug efficacy. Scientific and Technological Research Council of Turkey (TUBITAK) 2022-07-19 /pmc/articles/PMC10390210/ /pubmed/37529729 http://dx.doi.org/10.55730/1300-0527.3466 Text en © TÜBİTAK https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License. |
spellingShingle | Research Article ARMUTCU, Canan The investigation of parameters affecting Ibrutinib release from chitosan/tripolyphosphate/carbon nanofiber composite microspheres |
title | The investigation of parameters affecting Ibrutinib release from chitosan/tripolyphosphate/carbon nanofiber composite microspheres |
title_full | The investigation of parameters affecting Ibrutinib release from chitosan/tripolyphosphate/carbon nanofiber composite microspheres |
title_fullStr | The investigation of parameters affecting Ibrutinib release from chitosan/tripolyphosphate/carbon nanofiber composite microspheres |
title_full_unstemmed | The investigation of parameters affecting Ibrutinib release from chitosan/tripolyphosphate/carbon nanofiber composite microspheres |
title_short | The investigation of parameters affecting Ibrutinib release from chitosan/tripolyphosphate/carbon nanofiber composite microspheres |
title_sort | investigation of parameters affecting ibrutinib release from chitosan/tripolyphosphate/carbon nanofiber composite microspheres |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390210/ https://www.ncbi.nlm.nih.gov/pubmed/37529729 http://dx.doi.org/10.55730/1300-0527.3466 |
work_keys_str_mv | AT armutcucanan theinvestigationofparametersaffectingibrutinibreleasefromchitosantripolyphosphatecarbonnanofibercompositemicrospheres AT armutcucanan investigationofparametersaffectingibrutinibreleasefromchitosantripolyphosphatecarbonnanofibercompositemicrospheres |