Cargando…
Incidental vertebral fracture prediction using neuronal network-based automatic spine segmentation and volumetric bone mineral density extraction from routine clinical CT scans
OBJECTIVES: To investigate vertebral osteoporotic fracture (VF) prediction by automatically extracted trabecular volumetric bone mineral density (vBMD) from routine CT, and to compare the model with fracture prevalence-based prediction models. METHODS: This single-center retrospective study included...
Autores principales: | Bodden, Jannis, Dieckmeyer, Michael, Sollmann, Nico, Burian, Egon, Rühling, Sebastian, Löffler, Maximilian T., Sekuboyina, Anjany, El Husseini, Malek, Zimmer, Claus, Kirschke, Jan S., Baum, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390306/ https://www.ncbi.nlm.nih.gov/pubmed/37529605 http://dx.doi.org/10.3389/fendo.2023.1207949 |
Ejemplares similares
-
Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA
por: Löffler, Maximilian T., et al.
Publicado: (2021) -
Long-term reproducibility of opportunistically assessed vertebral bone mineral density and texture features in routine clinical multi-detector computed tomography using an automated segmentation framework
por: Bodden, Jannis, et al.
Publicado: (2023) -
Gender-, Age- and Region-Specific Characterization of Vertebral Bone Microstructure Through Automated Segmentation and 3D Texture Analysis of Routine Abdominal CT
por: Dieckmeyer, Michael, et al.
Publicado: (2022) -
Level-Specific Volumetric BMD Threshold Values for the Prediction of Incident Vertebral Fractures Using Opportunistic QCT: A Case-Control Study
por: Dieckmeyer, Michael, et al.
Publicado: (2022) -
Prediction of Incidental Osteoporotic Fractures at Vertebral-Specific Level Using 3D Non-Linear Finite Element Parameters Derived from Routine Abdominal MDCT
por: Yeung, Long Yu, et al.
Publicado: (2021)