Cargando…
A type-augmented knowledge graph embedding framework for knowledge graph completion
Knowledge graphs (KGs) are of great importance to many artificial intelligence applications, but they usually suffer from the incomplete problem. Knowledge graph embedding (KGE), which aims to represent entities and relations in low-dimensional continuous vector spaces, has been proved to be a promi...
Autores principales: | He, Peng, Zhou, Gang, Yao, Yao, Wang, Zhe, Yang, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390491/ https://www.ncbi.nlm.nih.gov/pubmed/37524764 http://dx.doi.org/10.1038/s41598-023-38857-5 |
Ejemplares similares
-
Hyperbolic Knowledge Graph Embeddings for Knowledge Base Completion
por: Kolyvakis, Prodromos, et al.
Publicado: (2020) -
An inductive knowledge graph embedding via combination of subgraph and type information
por: Liu, Hongbo, et al.
Publicado: (2023) -
Embedding-Based Recommendations on Scholarly Knowledge Graphs
por: Nayyeri, Mojtaba, et al.
Publicado: (2020) -
Representation Learning Method with Semantic Propagation on Text-Augmented Knowledge Graphs
por: Wang, Ling, et al.
Publicado: (2022) -
GFCNet: Utilizing graph feature collection networks for coronavirus knowledge graph embeddings
por: Xie, Zhiwen, et al.
Publicado: (2022)