Cargando…
Spiking CMOS-NVM mixed-signal neuromorphic ConvNet with circuit- and training-optimized temporal subsampling
We increasingly rely on deep learning algorithms to process colossal amount of unstructured visual data. Commonly, these deep learning algorithms are deployed as software models on digital hardware, predominantly in data centers. Intrinsic high energy consumption of Cloud-based deployment of deep ne...
Autores principales: | Dorzhigulov, Anuar, Saxena, Vishal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390782/ https://www.ncbi.nlm.nih.gov/pubmed/37534034 http://dx.doi.org/10.3389/fnins.2023.1177592 |
Ejemplares similares
-
PCA driven mixed filter pruning for efficient convNets
por: Ahmed, Waqas, et al.
Publicado: (2022) -
Incep-EEGNet: A ConvNet for Motor Imagery Decoding
por: Riyad, Mouad, et al.
Publicado: (2020) -
ConvNet and LSH-Based Visual Localization Using Localized Sequence Matching †
por: Qiao, Yongliang, et al.
Publicado: (2019) -
Enhancement of Patient Facial Recognition through Deep Learning Algorithm: ConvNet
por: Onyema, Edeh Michael, et al.
Publicado: (2021) -
RAPA-ConvNets: Modified Convolutional Networks for Accelerated Training on Architectures With Analog Arrays
por: Rasch, Malte J., et al.
Publicado: (2019)