Cargando…
E-YOLOv4-tiny: a traffic sign detection algorithm for urban road scenarios
INTRODUCTION: In urban road scenes, due to the small size of traffic signs and the large amount of surrounding interference information, current methods are difficult to achieve good detection results in the field of unmanned driving. METHODS: To address the aforementioned challenges, this paper pro...
Autores principales: | Xiao, Yanqiu, Yin, Shiao, Cui, Guangzhen, Zhang, Weili, Yao, Lei, Fang, Zhanpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391168/ https://www.ncbi.nlm.nih.gov/pubmed/37534234 http://dx.doi.org/10.3389/fnbot.2023.1220443 |
Ejemplares similares
-
Traffic Sign Recognition Based on the YOLOv3 Algorithm
por: Gong, Chunpeng, et al.
Publicado: (2022) -
A Small Object Detection Algorithm for Traffic Signs Based on Improved YOLOv7
por: Li, Songjiang, et al.
Publicado: (2023) -
Accuracy vs. Energy: An Assessment of Bee Object Inference in Videos from On-Hive Video Loggers with YOLOv3, YOLOv4-Tiny, and YOLOv7-Tiny
por: Kulyukin, Vladimir A., et al.
Publicado: (2023) -
A novel optimized tiny YOLOv3 algorithm for the identification of objects in the lawn environment
por: Wang, Xinyan, et al.
Publicado: (2022) -
Improved GBS-YOLOv5 algorithm based on YOLOv5 applied to UAV intelligent traffic
por: Liu, Haiying, et al.
Publicado: (2023)