Cargando…
Artificial intelligence–based stratification of demographic, ocular surface high-risk factors in progression of keratoconus
PURPOSE: The purpose of this study was to identify and analyze the clinical and ocular surface risk factors influencing the progression of keratoconus (KC) using an artificial intelligence (AI) model. METHODS: This was a prospective analysis in which 450 KC patients were included. We used the random...
Autores principales: | Kundu, Gairik, Shetty, Naren, Shetty, Rohit, Khamar, Pooja, D’Souza, Sharon, Meda, Tulasi R, Nuijts, Rudy M M A, Narasimhan, Raghav, Roy, Abhijit Sinha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391495/ https://www.ncbi.nlm.nih.gov/pubmed/37203049 http://dx.doi.org/10.4103/IJO.IJO_2651_22 |
Ejemplares similares
-
A novel combination of corneal confocal microscopy, clinical features and artificial intelligence for evaluation of ocular surface pain
por: Kundu, Gairik, et al.
Publicado: (2022) -
Role of artificial intelligence in determining factors impacting patients’ refractive surgery decisions
por: Kundu, Gairik, et al.
Publicado: (2023) -
Ocular surface immune cell diversity in dry eye disease
por: Nair, Archana Padmanabhan, et al.
Publicado: (2023) -
Keratoconus patients exhibit a distinct ocular surface immune cell and inflammatory profile
por: D’Souza, Sharon, et al.
Publicado: (2021) -
Impact of crossplay between ocular aberrations and depth of focus in topo-guided laser-assisted in situ keratomileusis outcomes
por: Khamar, Pooja, et al.
Publicado: (2023)