Cargando…

SMYD3 induces sorafenib resistance by activating SMAD2/3-mediated epithelial-mesenchymal transition in hepatocellular carcinoma

Drug resistance prominently hampers the effects of systemic therapy of sorafenib to hepatocellular carcinoma (HCC). Epigenetics have critical regulatory roles in drug resistance. However, the contributions of histone methylatransferase SET and MYND domain containing 3 (SMYD3) to sorafenib resistance...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shanshan, You, Xin, Liu, Xiaoshu, Fengwei Zhang, Zhou, Hongjuan, Shang, Xuechai, Cai, Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391607/
https://www.ncbi.nlm.nih.gov/pubmed/37534166
http://dx.doi.org/10.1016/j.isci.2023.106994
Descripción
Sumario:Drug resistance prominently hampers the effects of systemic therapy of sorafenib to hepatocellular carcinoma (HCC). Epigenetics have critical regulatory roles in drug resistance. However, the contributions of histone methylatransferase SET and MYND domain containing 3 (SMYD3) to sorafenib resistance in HCC remain largely unknown. Here, using our established sorafenib-resistant HCC cell and xenograft models, we found SMYD3 was markedly elevated in sorafenib-resistant tumors and cells. Functionally, loss- and gain-of-function studies showed that SMYD3 promoted the migration, invasion, metastasis and stemness of sorafenib-resistant HCC cells. Mechanistically, SMYD3 is required for SMAD2/3-mediated epithelial-mesenchymal transition (EMT) in sorafenib-resistant HCC cells by interacting with SMAD2/3 and epigenetically promoting the expression of SOX4, ZEB1, SNAIL1 and MMP9 genes. In summary, our data demonstrate that targeting SMYD3 is an effective approach to overcome sorafenib resistance in HCC.